
 TABLE OF CONTENTS

 CHAPTER PAGE

 PART I. CROMEMCO RELOCATABLE ASSEMBLER MANUAL

 1. Getting Started in Assembly Language Programming.2

 2. Calling the Assembler. 8
 Options Specified When Calling ASMB. 9
 Summary of Defaults and Limits. 14

 3. Assembler Fields. 15
 Names (Labels). 16
 Opcode Mnemonics. 16
 Operands. 17
 Remarks. .20

 4. Pseudo-opcodes Recognized by the Assembler. 21
 Alphabetical List of Pseudo-ops. .21
 Source Code Segments. 35

 5. Macro and Conditional Assembly. 40
 Macro Assembly (MACRO Definition and Calls).40
 Conditional Assembly (IF Statements). 47
 Examples of Macro and Conditional Assembly. 49

 6. Assembler Error Messages. 52
 Error Messages Generated Following a Call to ASMB.52
 Error Messages Generated During Assembly. 54

 7. Assembler Print-Listings. 60
 Sample Listing. 61
 Listing Columns. .65
 Lines of Listing. 65
 Listing Symbols. .66
 Tables Following the Listing. 67

 PART II. CROMEMCO LINKER/LOADER MANUAL

 1. Using the CROMEMCO Linker/Loader. 69
 Command Format. 69
 Link Switches. .70

 ii

 2. Format of LINK-Compatible Object Files. 72

 3. LINK Error Messages. .74
 Fatal Errors. 74
 Warnings. 75

 4. Examples of Linking Modules. .76

 PART III. CROMEMCO PROGRAM DEBUGGER MANUAL

 1. Introduction to DEBUG. .80
 Loading DEBUG. .80
 Control Characters. 8O
 Command Format. 81
 @ Register. 81
 Address Expressions. .82
 Swath Operator. 82
 Errors. 82

 2. DEBUG Commands. 83

 3. Summary of DEBUG Commands. .92
 Summary of Register Names. .93

 PART IV. CDOS PROGRAMMER'S MANUAL

 1. Introduction to CDOS System Calls. .95
 Memory Allocation. .95

 2. Device I/O - List of CDOS System Calls. 97
 CDOS Device Function Calls. 97
 CDOS Disk Function Calls. .100
 Additional System Calls. 105

 3. Summary of CDOS Function Calls. .107

 PART V. ASSEMBLER LIBRARY ROUTINES

 1. Routines Available in ASMLIB. .110
 Decimal Conversion. .110
 Hexadecimal Conversion. .111
 Character I/O Routines. .112

 2. An Example. .117

 PART VI. CREATING A NEW LUN TABLE FOR CROMEMCO FORTRAN IV

 1. Procedure for Creating a New LUN Table for FORTRAN.122

 Page 1

 **
 PART I - CROMEMCO RELOCATABLE ASSEMBLER MANUAL
 **

 CROMEMCO MACRO ASSEMBLER INSTRUCTION MANUAL

 CROMEMCO INCORPORATED
 280 Bernardo Avenue, Mountain View, California
 Copyright 1978
 Page 2

 **
 CHAPTER 1: GETTING STARTED IN ASSEMBLY LANGUAGE PROGRAMMING
 **

 The purpose of an Assembler is to provide a means of translating easily
 understood mnemonics, which represent the instructions of a computer,
 into object code which may be loaded into memory and run as a program.
 The CROMEMCO Disk-Resident Z-80 Relocatable Macro Assembler is a two-
 pass assembler which reads source code from a disk file, assembles it,
 and produces a relocatable object and/or a print-listing file. These
 files may be sent to any of the disks, suppressed altogether, or sent
 to the console (listing file only). The CROMEMCO Relocating Linker/
 Loader may then be used to locate the assembled code anywhere in memory.
 The completely assembled and linked machine code may be saved in a disk
 .COM file for execution as a command program.

 The use of a relocatable assembler and linker provides one of the most
 versatile ways of creating machine language programs for the computer.
 The time saved through their use is well-worth the time spent in
 gaining familiarity. These two command files allow one to create and
 assemble a number of different modules separately, and then link them
 together at run time. Or one can link an assembled user-program to an
 already existing library of useful object code files. In addition, one
 may assemble programs using a compiler (for examples assemble FORTRAN
 programs into machine code using CROMEMCO's FORTRAN Compiler), and link
 these object modules to existing machine code modules, programs, or
 subroutines. At the same time the final program may be located to run
 anywhere in memory.

 The CROMEMCO Relocatable Assembler (hereafter called ASMB or the
 Assembler) is both a Macro and a Conditional Assembler as well.
 A separate chapter of this manual is devoted to these features.
 The Macro capability allows the user to very easily generate such
 things as multiple blocks of code, design added capabilities for
 the Assembler for a particular purpose, and write much shortened
 versions of source code by having a Macro library searched for
 often-used routines. The Conditional (IF statement) assembly
 feature allows blocks of code to either be included or not, depen-
 ding on the satisfaction of user-defined conditions. There are
 also capabilities for INCLUDing other source code files at assembly
 time and declaring other program modules EXTernal to the main pro-
 gram, which are then linked to it at run-time. All these features
 are described further in the chapters on pseudo-ops.

 The CROMEMCO Relocatable Macro Assembler is supplied to the user
 on diskette (large or small) under the directory entry "ASMB.COM".
 The way the Assembler is called is described in detail in Chapter 2.
 A source code file to be assembled must have the three-letter exten-
 sion .Z80 to be found by ASMB. To assure correct operation the

 Assembler should be used with the following minimum hardware con-

 Page 3

 figuration: 32K of contiguous RAM memory beginning at location 0 and
 the CROMEMCO 4MHz Z-80 CPU card, along with the CROMEMCO Disk Oper-
 ating System (CDOS) hardware and software. When called, ASMB loads
 into memory at 100H and begins execution there.

 Since most users will be eager to try out some of the features of
 ASMB right away, this chapter may be used as a step-by-step beginner's
 manual for the composition, assembly, link, and execution of a simple
 Z-80 machine language program. The name of the program is "TIMER"
 and its purpose is to ring the console bell at approximately half-
 second (using 4MHz. clock) intervals as determined by a timer loop.
 It will not be necessary for those users familiar with assembly
 language programming to read this chapter. These persons may skip
 ahead to Chapter 2 at this point.

 The first step is to turn on the power to the computer and boot-up
 the CROMEMCO Assembler Disk (Model FDA) in drive-A. You will notice
 upon typing out the directory that supplied along with the Assembler
 (ASMB.COM) is the CROMEMCO Text Editor (EDIT.COM) and CROMEMCO Debug
 (DEBUG.COM) programs. We will use the Text Editor to enter our source
 code program. The Editor manual is also supplied with the Assembler
 package and should be used for questions and reference concerning
 EDIT. However, some of the simple commands are explained here
 for the benefit of the user who is unfamiliar with the Editor.

 Hence, the user can now call EDIT giving the name and three-letter
 extension of the file we wish to create by typing the following.
 (Note that before typing the command line you should have the CDOS
 prompt for the drive you are using, for example "A." for drive-A.)

 EDIT TIMER.Z80

 The Editor will then respond with:

 CDOS EDITOR VERS. 00.07
 NEW FILE

 The prompt for the Editor is an asterisk, "*", and commands may be
 entered any time this prompt is displayed. We now wish to enter
 the text of the source program so we use the Insert command of EDIT.
 This is done simply by typing the letter "I" followed by a carriage
 return (CR). We can then start typing lines of text, ending each
 line with a carriage return. Mistakes can be corrected by back-
 spacing or can be corrected after we have finished with Insert mode
 as explained below. There are four fields which may be used in a
 line of source code: labels, opcodes, operands, and remarks. Labels
 are followed by a colon and remarks are preceded by a semi-colon.
 If there are more than one operand, they are separated by a comma.
 The instruction mnemonics or opcodes for the various Z-80 instructions
 can be found in the Z-80 CPU Technical Manual published by Mostek
 and Zilog along with an explanation of each. Note that in the
 following text a tab was used to separate the various fields; this

 is done in the Editor by typing the CTRL-I on the console. Also
 note that either upper- or lower-case are allowed. We now type
 in the source code:

 Page 4

 ; This program rings the console bell at approximately
 ; half-second intervals determined by a timer loop.
 ;
 BELL: EQU 7 ; console bell is ASCII 07
 WRITE: EQU 2 ; write character to console
 CDOS: EQU 5 ; use system call to write
 TIMIT: EQU 2FFH ; 2 is no. of half-seconds;
 ; FF (256) is no. of loops
 DURAT: EQU 0FFH ; FF (256) is loop duration
 ;
 ; Main Program
 ;
 START: LD SP,STACK ; initialize stack pointer
 LOOP: LD BC,TIMIT ; B is no. of half-sec.;
 ; C is no. of loops
 TIM2: LD A,DURAT ; get duration (256)
 TIM1: DEC A ; decrement and
 JR NZ,TIM1 ; loop til zero
 DEC C ; decrement loop counter
 JR NZ,TIM2 ; until zero
 DJNZ TIM2 ; countdown half-seconds
 LD E,BELL ; set-up to ring bell
 LD C,WRITE ; set-up to write console
 CALL CDOS ; call system
 JP LOOP ; loop and repeat
 ;
 ; Stack Area
 ;
 BOTTOM: DS 40H ; allow 64 bytes for stack
 STACK: EQU ; current location counter
 equals top of stack
 END START

 This code should be typed in exactly as it appears here (although
 comments may be omitted if desired). When the entire body of text
 has been entered, end the Insert mode by pressing ESCape or CTRL-Z.
 (You have left Insert mode when you again get the asterisk prompt.)
 You now would like to review what you have written to check for
 errors. Move the character-pointer to the top of the file by
 typing "B <CR>". Then type out your file using the T or P command.
 For example the command 10T will type out 10 lines, or 0P will
 type out the current page of 23 lines. The S or Substitute command
 can now be used to make corrections. The format of the command is

 S<oldtext>^[<newtext>^[<CR>

 where the "^[" character is an ESCape. The text string for which
 you are substituting must be exclusive; for example the command

 SP^[R^[

 is not good because the first "P" encountered will be changed to an

 Page 5

 "R". The following command is much better because the substitution
 is for a one of a kind string:

 SJP^INZ,TIM1^[JR^INZ,TIM1^[

 The "^I" is the way EDIT prints CTRL-I's. When all corrections have
 been made, you may Exit from the Editor by typing "E <CR>". When
 the "A." prompt is again displayed on the console, the created file
 will have been saved on the disk under the filename "TIMER.Z80".
 If you desire more information about editing files at this point,
 refer to the Text Editor Manual for complete descriptions of the
 Editor commands. We will now proceed with assembling the file.

 The Assembler is called in a similar manner to the Editor. The
 command line you should type is

 ASMB TIMER

 The Assembler understands when it receives this command line that
 it will find the source file on the current drive, and that it will
 place the .REL (relocatable) object file and .PRN (print) listing
 file on the current drive as well. Our file "TIMER.Z80" will now
 be assembled. When finished, control will again be returned to
 CDOS and the "A." prompt given. Just prior to exiting, ASMB will
 print on the console:

 Errors 0

 Program Length 005A (90)

 end of assembly

 provided you have made no typing errors in editing the file. If
 there are some errors, re-edit the file and correct them as described
 above. Then re-assemble as before. The numbers above give the
 program length first in hexadecimal and then decimal.

 The Assembler will now have created the .REL and .PRN files on the
 disk. If you would like a listing of the programs type:

 TYPE TIMER.PRN

 and press CTRL-P (assuming you have a printer correctly hooked up
 to parallel port 54H; if you have no printers omit the CTRL-P)
 before typing the carriage return. The listing will then be printed
 on both the console and the printer. There is a great deal of
 information contained in this listing. Briefly, the listing consists
 of these sections. The first column is the hexadecimal address of
 the instruction, and the second column may be one of three things:

 (1) the object code of up to a four-byte instruction in hex, (2) the
 object code of four bytes of data in hex, or (3) the equivalent value
 of the operand expression in parentheses. The third column gives
 the line numbers of the source in decimal. The fourth, fifth, and
 sixth columns are the label, opcode, and operand fields, respectively.

 Page 6

 The rest of each line contains the remark if there is one. The
 complete listing which results from the assembly of our given example
 source file is given in Chapter 7 along with a detailed description
 of every feature of the listing.

 The last step prior to running the program is to load it into memory.
 This is done using the CROMEMCO Linker/Loader. The command line
 that should be typed is:

 LINK TIMER

 The Linker will then prompt with an asterisk (*). This means that
 it is awaiting further instructions. At this point you may either
 start execution or exit to CDOS, save the file, and execute it as
 a command file. Let us choose the second method. (For those who
 wish to try the first method, simply type /G to the "*" prompt.)
 To the asterisk type the characters /E which will exit to CDOS.
 LINK will then print on the console a message similar to:

 [1000 105A 16]

 The first number is the starting address for execution; the second
 number is one more than the highest address used by our program, and
 the last number gives the number of pages to be saved to create a
 command file. We now create this .COM file by typing:

 SAVE TIMER.COM 16

 Command files may be executed directly from CDOS simply by typing
 their name. They are then loaded into memory beginning at 100H
 and execution begins there. The Linker has already placed the
 necessary "JP 1000H" for us at 100H so we execute the TIMER program
 simply by typing the word "TIMER". The bell on your console should.
 begin ringing at approximately half-second intervals, telling you
 that the machine language program we have created is working!

 Good assembly language programming practice usually dictates that
 a program should be debugged before executing it directly as we
 have done. By this method the user can insert breakpoints to stop
 execution so that the registers and memory contents can be checked
 to determine if the program is executing correctly. We have skipped
 the debugging stage so as not to complicate the example unnecessarily.
 However, when you create assembly language programs of your own,
 you can use the CROMEMCO Debugger program (DEBUG.COM) to execute
 it using breakpoints. To do this you would first have to save your
 program in a file as we have done above; then load it using DEBUG.
 See Part III on the Debugger for several examples of the way to
 debug a program.

 The example.program of this chapter is KNOWN TO WORK if the source
 is created and assembled according to the procedures outlined
 above. Should you have any difficulties with any of the steps,
 try working through that step a second time. You may also refer
 to the manual which describes that function for a detailed description

 Page 7

 of the procedure. This book is divided into a number of distinct
 parts, which are listed in the table of contents for reference.
 Parts I, II, and III are the complete Assembler, Link, and Debug
 manuals, respectively. Part IV is the CDOS Programmer's Manual,
 describing the many system calls which can be made to CDOS for
 I/O and disk operations. Part V is a description of the Library
 of relocatable modules which are supplied with the Assembler disk.
 Finally, Part VI is a description of the method for changing the
 Logical Unit Number Table (LUN Table) for CROMEMCO FORTRAN IV to
 accommodate different I/O drivers. This section is included with
 this book because the procedure requires that you use the CROMEMCO
 Relocatable Assembler and Linker.

 Page 8

 CHAPTER 2: CALLING THE ASSEMBLER

 The Assembler is called from disk simply by typing "ASMB" followed
 by the filename of the source code to be assembled. This source-
 file MUST have the extension .Z80 to be found by the Assembler,
 regardless of whether or not it consists entirely of Z80 code.
 However, when calling ASMB, the user may specify an optional 3-letter
 drive-request for the filename which has NO relation to the 3-letter
 extension of the filename on disk. Note that if this 3-letter drive-
 instruction is omitted, ASMB will default to the CURRENT drive for all
 operations. This drive-request instruction is of the form .GRS, where
 G stands for one of the letters, A, B, C, or D, and is the drive on
 which the SOURCE file is to be found; R stands for one of the letters,
 A, B, C, D, or Z, and is the drive on which the relocatable OBJECT
 file is to be placed during assembly (Z means do not create an object
 file); and S stands for one of the letters, A, B, C, D, X, or Z, and
 is the drive on which the print-listing will be placed during assembly.
 In the case of the print-listing Z means do not create the listing, and
 X means send the listing to the console but not to the disk. Note that
 you may use the Control-P (^P) function of CDOS, as always, to cause
 the console listings to also be sent to a printer. Also note that the
 relocatable object file will be placed on the disk with the extension,
 .REL, and the print-listing will be placed with the .PRN extension.

 An example will serve to illustrate further the features described
 above. Suppose the file to be assembled resides on disk drive A under
 the filename USERFILE.Z80. If it is desired not to have the .REL and
 .PRN files sent to drive A (for lack of room an disk A, for example),

 the Assembler might be called by the command line:

 ASMB USERFILE.ABX <^P> <CR>

 This will assemble the source file on drive A, create an object file on
 drive B, and send the print-listing to both the console and the printer.

 A number of options may also be specified at assembly time if desired;
 their conventions are described in detail in the following sections.
 These options are specified simply by typing them as part of the
 command line when calling ASMB, separated by spaces. Since there are
 quite a number of options, it's possible to have the command line
 exceed the line-length limit of the terminal being used. If this
 is the case, a Control-E (^E) may be issued to provide a physical CR-LF
 so that the command line may be continued. Note that a logical CR-LF
 (same as typing RETURN an the console) terminates the command and
 begins assembly. If the terminal being used automatically provides a
 logical CR-LF at the physical end of a line, then a Control-E should
 be issued before the end-of-line has been reached. The total line
 length is limited to 128 characters by CDOS.

 Page 9

 Options are specified only in the call to ASMB. The only exceptions
 to this are the List Options (see below), which may be used in
 slightly different form as operands of the LIST pseudo-op. Options
 may be specified in any order; any number of the allowable options
 may be specified at the same time. Consider the following sample
 call of the file THISFILE.Z80 by ASMB:

 ASMB THISFILE RANGE PAGE=50 SYMB XREF OPCODE

 Notice that the 3-letter drive-request instruction was not used in
 this example; this means that all disk operations will involve the
 current drive. The options specified ask ASMB to mark relative jumps,
 format a listing page, and generate symbol and cross reference tables.
 These are described in more detail below under the respective options.

 Throughout this manual, the symbols "< >" are used to bracket quanti-
 ties which are to be replaced by user-quantities, usually names of
 files on the disk. However, in NO cases are the bracket symbols
 themselves to be entered with the quantity involved. Also, throughout
 this manual, the pseudo-ops are written in all-upper-case to set them
 off. However, this does not mean that they must be written this way
 in source-code. Both upper- and lower-case are acceptable.

 +++++++++++++++++++++++++++++++++++
 Options Specified When Calling ASMB
 +++++++++++++++++++++++++++++++++++

 ============
 List Options
 ============
 The List Options are similar to the operands of the LIST pseudo-op
 which may be part of a source file. However, the List Options as

 specified at assembly time will override ANY and ALL LIST items given
 in source code. Following are the four allowable List Options; they
 are specified by typing the word(s) given here in the command line
 calling ASMB. Note that if mistakenly both of a pair Cond-Nocond or
 Gen-Nogen are specified, the one which appears last on the command line
 has precedence. An important point to note is that NONE of the List
 Options changes the actual object code assembled; they merely change
 what is sent to the print-listing file on console or disk.

 Cond

 This option forces the generation and printing of all blocks of code
 which are part of an IF definitions whether the IF is true or false.
 The default is Cond if no LIST pseudo-ops are present in the source
 file; therefore, it would generally be used as an option only to over-
 ride all the Nocond operands of LIST in the source. Note that this has
 NO effect on whether the IFs are satisfied or not.

 Page 10

 Gen

 This option forces the generation and printing of the Macro which
 follows every Macro call. The default is Gen if no LIST pseudo-ops
 are present in the source file; therefore, it would generally be
 used as an option only to override all the Nogen operands of LIST in
 the source.

 Nocond

 This option forces NO printing of IF or ENDIF statements and NO
 printing of IF definitions (the code following the IF) if the IF
 statement is false. In other words if the IF statement equals 0,
 thus causing the code which is part of the IF not to be assembled,
 the print-listing will likewise not contain the unused IF code.
 If the IF statement has a value other than 0 and is thus true, the
 print-listing will not contain the IF or ENDIF lines but will contain
 the code of the IF definition; therefore, the included portion of code
 will appear contiguously with the rest of the source code. The Nocond
 option is used to override all the Cond operands of LIST pseudo-ops in
 the source file.

 Nogen

 This option forces NO printing of the code following MACRO calls. How-
 ever, NOTE that Macro DEFINITIONS are always printed as are the Macro
 CALLS themselves; it is only the code which the Macros generate, the
 Macro Expansions, which are not printed. This option prevents very long
 print listings when using multiple Macro calls. Since the Macro code
 will not be printed, neither will the object code which is printed on
 the same line; however, Nogen does not in any way affect the object
 code sent to the .REL file. The Nogen option is used to override all
 the Gen operands of LIST pseudo-ops in the source file.

 ======================
 Macro=<d:filename.ext>
 ======================
 The Macro= option is one of the most powerful features of the Assem-
 bler. It is used to specify the name of a disk file which is to be
 searched to satisfy any Macros required at assembly time. During
 Pass 1, the Assembler forms a Macro Definition Table (MDT) of the
 Macros defined in a source program. (Remember that ABMB expects Macros
 to be defined before they are called.) If the Macro= option is speci-
 fied, a table is formed of the ADDRESSES of the Macros contained in
 this library. Now, when an opcode is encountered in a source program,
 the MDT is the first place searched to satisfy it. If it is not found
 there, the Macro Address Table for the Macro Library (only when using
 Macro=) is searched next; if the Macro is found, then the Macro Defini-
 tion is loaded into memory from the disk. If the opcode is not found
 in either of these places, the Opcode Definition Table (ODT) is
 searched last. Thus, because ASMB searches for a Macro before an
 opcode, it is possible to redefine Z-80 instructions using Macros (see

 Page 11

 the chapter on Macros). Another advantage of this method of searching
 is that the entire Macro Library specified does not become part of the
 source code. Thus, you may specify a very large Macro-library file,
 but only those Macros actually used are included in the assembled code.
 Note that this is different from the INCLUDE pseudo-op in that the
 INCLUDE would include the entire file, needed or not.

 The Macro= command should be typed exactly as shown above, where the
 user would insert following the "=", the filename.ext to be searched.
 The "d:" represents the disk drive letter (one of A-D) and is optional;
 if not specified, ASMB defaults to the current drive in its search for
 the Macro file. The default for the Macro= option is, of course, no
 Macro file searched; however, this does not in any way affect the
 manner in which Macros intrinsic to the source code are handled.

 ======
 Opcode
 ======
 The Opcode option, when specified, will create a cross reference
 listing of OPCODES and MACROS used, which will be sent to the console
 or disk following the assembled-code listing. This cross reference
 contains all of the opcodes used in the assembled program along
 with the Macro names used, in alphabetical order, and the line
 numbers of their definitions and places of occurrence. The first
 column following the column of opcodes and labels is reserved for
 the line numbers of the definition points of Macros, and is thus
 blank for the opcodes. Subsequent entries contain the line numbers
 of the places of occurrence of opcodes and Macros. Note that opcode
 cross reference listings are limited in width by the Width option
 and that a line will be stopped at the last complete entry which will
 fit this width, and will be continued on the next line. The Opcode
 option is very useful for debugging purposes as it allows you to find
 all the occurrences of a particular opcode very quickly. The default
 is no-Opcode cross reference table.

 The Opcode Cross Reference is implemented by a disk sort. This means
 that when this option is selected, ASMB creates a file on the CURRENT
 drive called <filename>.$$0 where filename is the file being assembled.
 Then, when assembly and the opcode cross reference are complete, this
 file is deleted from the disk. Note that if the current drive does
 not have room for the opcode temporary file, an error message is
 printed and assembly is aborted (see also "write error" in the error
 message chapter).

 ===============================
 Page=<number decimal lines/page>
 ===============================
 The Page option is used when generating a printer-listing to cause
 the Assembler to calculate and display a specified number of lines
 per page. At the top of each page ASMB will also print a heading,
 a title if specified, and a page number. Note that even if several
 lines are longer than the Width specification and wrap around, the
 Page function will count these correctly, and will list the exact
 number of lines specified per page (including the heading). The
 default value is 60 and the limits are 10 to 254 lines. Note that
 the Page=, Top=, and Width= options must be typed exactly as shown
 (no spaces) in order to be interpreted correctly.

 Page 12

 ======
 Parity
 ======
 The Parity option is normally specified when assembling code which
 was originally 8080 code and has been entered using Z80 mnemonics.
 This is because the Z80 and 8080 microprocessors treat the parity
 flag slightly differently and the Z80 may not execute 8080 parity
 instructions correctly (the Z80 treats parity as an overflow flag
 after arithmetic instructions). By specifying the Parity options
 the user will be warned in the assembled listing of possible problems
 along this line by the letter 'P' preceding the line numbers of the
 affected lines. It is up to the user to determine whether or not
 the parity flag is used correctly in a given situation. The instruc-
 tions which will be marked are: JP PE,nn; JP PO,nn; CALL PE,nn;
 CALL PO,nn; RET PE; and RET PO. The default is no-Parity.

 =====
 Range
 =====
 The Range option is used to have the Assembler tell you all those
 places in code which currently use absolute jumps which are "within
 range" for doing relative jumps. When specified, the line numbers
 of the affected jumps will be preceded by the character "R". Thus,
 the next time the code is edited for changes, the corresponding
 absolute jumps may be replaced by relative jumps. Note that the
 Assembler itself does NOT make the replacements. The default is
 no-Range option.

 ==============
 Symbol or Symb
 ==============

 The Symb option is used to cause the Assembler to print the symbol
 table following the listing. The symbol table lists all program or
 data label names in alphabetical order from left to right in rows,
 and the hex address which is the value of the label used by the Assem-
 bler followed by the type of code segment there. For example the entry

 LABEL 00A7'

 means that LABEL has the value 0OA7 in the relative-code program area.
 (The symbols #, *, ", and ' are defined in the section on code
 segments.) If the label belongs to an EXTernal, the address given is
 that of its last OCCURRENCE in the present module, rather than its
 actual value. Similarly, for a label defined by a DL (see Define
 Label), the value listed in the symbol table is its last value to
 occur in the source code. The Width of the symbol table in a printer-
 listing will be the same as that of the code listing preceding it;
 however, the line length of the symbol table will be limited to
 include the last full label name and address which can be fit within
 that width. The default is no-Symb table option.

 ==============================
 Top=<no. dec. lines before top>
 ===============================
 The Top option is used to specify the number of lines between the last
 line of one page and the top or first line of the next page when

 Page 13

 creating printer listings. This feature may be used to specify the
 spacing between pages when creating listings. If the value 0 is
 specified, formfeeds are issued to the printer at the end of each
 page. This is the default value and is the one ordinarily used.
 Notice that the values of Page+Top should equal the number of lines
 desired per page of printed text. The limits are 0 to 255 lines.

 ==============================
 Width=<number decimal columns>
 ==============================
 The Width option is used to specify the number of characters of printed
 text which will appear per line of a listing. This feature is used to
 allow the use of different widths of paper in printer listings or to
 allow for terminals capable of displaying different numbers of charac-
 ters per line. The default value is 79, which should accomodate all
 80-character terminals. The limits are 39 to 255 characters. If lines
 longer than that specified are written, they will wrap around and be
 continued on the next line of the listing. Note that the symbol table,
 error listing, and opcode and label cross reference tables are also
 limited by the Width specification.

 ====
 Xref
 ====
 The Xref option, when specified, will create a cross reference listing
 which will be sent to the console, printer, or disk (as specified)
 following the assembled-code listing. This cross reference contains
 each of the label names used in the assembled program, the line

 number of its definition, and the line numbers in numerical order
 of each of its places of occurrence. The first column following the
 column of labels is the column of line numbers of their definitions.
 Note that if DL's (Define Labels) are used in the source code, those
 label names may be defined more than once. Thus, in the cross re-
 ference listing, the subsequent defining line numbers are preceded by
 a '#' to set them off. Do NOT confuse this with the '#' for Data areas
 defined elsewhere. The ENTRY pseudo-op will also generate a doubly-
 defined label, once at the ENTRY point itself and once where the label
 is actually defined. The Xref option is very useful for debugging
 purposes as it provides an alphabetical listing of the locations
 of every label used in a program. The default is no-Xref table.
 Note that cross reference listings are limited in width by the Width
 option and that a line will be limited to the last complete entry
 which will fit within that specification; entries will then be
 continued on succeeding lines.

 The Xref Cross Reference is implemented by a disk sort. This means
 that when this option is selected, ASMB creates a file on the CURRENT
 drive called <filename>.$$$ where filename is the file being assembled.
 Then, when assembly and the cross reference are complete, this file is
 deleted from the disk. Note that if the current drive does not have
 room for the cross reference temporary file, an error message is
 printed and assembly is aborted (see also "write error" in Chapter 6).

 Page 14

 ++++++++++++++++++++++++++++++
 Summary of Defaults and Limits
 ++++++++++++++++++++++++++++++

 The default values and limits of the above options are summarized
 here for convenient reference.

 ========
 Defaults
 ========
 In the absence of specified options, ASMB will default to these values:
 no-Range, no-Parity, no-Xref, no-Symb, no Macro=, no-Opcode, Page=60
 lines, Top=O (formfeed), Width=79 characters, default to List options
 specified within source code as operands of the LIST pseudo-op.

 ======
 Limits
 ======
 The paper-managing options for generating printer listings are limited
 to the following values: Page= 10 through 254 lines, Top= 0 (formfeed)
 through 255 lines, Width= 39 to 255 characters. The lower limits on
 Page and Width are imposed to assure that at least some code is printed
 on each page.

 Page 15

 CHAPTER 3: ASSEMBLER FIELDS

 The Assembler recognizes four fields or different types of
 expressions. These are: labels, opcode mnemonics, operands, and
 remarks. The conventions which apply in the use of these four
 fields are given below following remarks on the syntax of ASMB.
 Any two of the four fields must be separated from each other by
 at least one delimiter; these are: a tab, a space, a colon (after
 labels only), a semi-colon (before remarks only), or a CR-LF (to
 terminate lines). Multiple delimiters may be used to improve
 readability.

 Characters and Line Length

 The Assembler accepts any printable ASCII characters in lines of
 code. Specifically, this means any ASCII character having a hex
 value between 20H and 7EH inclusive. In addition the three control-
 characters, CTRL-I, CTRL-N, and CR are also recognized (^I is the
 tab character which it translated into up to eight spaces by ASMB,
 ^N is the character to expand a line on the printer, and CR is a
 carriage return). NO other control-characters are recognized by
 ASMB. The maximum length of a line accepted by the Assembler is
 80 characters, where the last character is the CR. Lines having
 more than 8O characters will be truncated.

 Upper and Lower Case

 It would be good to mention at this point that the Assembler will
 accept ALL commands, options, opcodes, pseudo-ops, filenames, or
 any of the other Input it requires in both upper and lower case
 or a combination of the two. This means that source code files may
 be entirely lower case and will still be understood by ASMB. How-
 ever, even though internally ASMB treats them the same, when listing
 out the opcode and cross reference tables, because of the sort
 routine used, there will be as many different entries as there are
 variations in the label or opcode used. For example, the label
 BEGIN will be a separate entry from the label Begin. This is actually
 a useful feature; it is possible to have sections of code which use
 the same data labels, but still have the ENTRIES in the cross reference
 table remain separate. Thus, it is easier for the user to keep track
 of the two sections while debugging. Note that the two labels are
 ALWAYS equivalent to the Assembler.

 Page 16

 ++++++++++++++
 Names (Labels)
 ++++++++++++++

 Names are considered to be the labels of all instructions as well as
 the operands of pseudo-ops such as ENTRY, EXT, and NAME. Labels may
 be as long as desired (if all on one line); however, only up to the
 first 6 characters are used by the assembler. Thus, the first six
 characters of a label may not be duplicated in another label. The

 first character of a label must be an alphabetic character or "."
 or "$"; the remaining characters may be ".", "$", or any alphanumeric
 (A-Z, a-z, 0-9). The delimiter for a label is generally a colon-space,
 colon-tab, or a colon-CR-LF. However, the colon may be eliminated IF
 the label begins in column one. Note that this means that opcode
 mnemonics may NOT begin in column one. The operand may follow the
 colon immediately if desired.

 The following labels are illegal because the Assembler considers
 them to be register names:

 A B C D E F H L I R
 AF BC DE HL SP IX IY

 These symbols are also illegal if written in lower-case.

 ++++++++++++++++
 Opcode Mnemonics
 ++++++++++++++++

 The ASMB Assembler recognizes all standard Z-80 mnemonics. For
 the reader who does not have familiarity with these, they are well-
 documented in the Z-80 CPU Technical Manual published by both Zilog
 and Mostek. The following mnemonics are recognized by ASMB in BOTH
 the forms shown. ASMB recognizes these opcodes in the form published
 by Zilog and Mostek:
 ADC A,s; ADD A,n; ADD A,r; ADD A,(HL); ADD A,(IX+d);
 ADD A,(IY+d); SBC A,s; IN A,(n); OUT (n),A.
 ASMB also recognizes them in this abbreviated form:
 ADC s; ADD n; ADD r; ADD (HL); ADD (IX+d); ADD (IY+d);
 SBC s; IN A,n; OUT n,A.
 In addition the Assembler will allow either of the formats shown for
 the following four instructions:
 IM 0 or IM0
 IM 1 or IM1
 IM 2 or IM2
 DJNZ nn or DJNZ,nn

 Opcodes may begin on any column of a line EXCEPT column one. They
 may be preceded by a label. They must be followed by a space or
 tab as a delimiter between the opcode and the operands, or if there
 are no operands and no remarks, the line is terminated by a CR-LF.

 Pseudo-opcodes are a special form recognized only by the Assembler
 and for which no object code is generated. The conventions of
 ASMB for pseudo-ops are described in other sections. Some of
 the common ones are ORG, EQU, EXT, ENTRY, DEFB, DEFS, DEFM, and END.

 Page 17

 A special type of opcode is the MACRO name; when this is listed
 in a column of source code, ASMB will insert the corresponding
 code of the MACRO at assembly time. For more information on
 this see the description of MACROs in Chapter 5.

 ++++++++
 Operands
 ++++++++

 Operands may consist of register names, constants, label names, or
 expressions. Register names include all standard Z-80 registers.
 These are documented in the Z-80 CPU Technical Manual published by
 Zilog and Mostek for the reader who is not familiar with their names
 or purposes. Constants consist of one of the five types outlined
 in the Constants section below. Names may include DATA labels,
 program segment labels, subroutine names, COMmon names, EXTernals,
 ENTRY names, EQUate statement labels, or the like; they must be
 set up as described in the Names section above. NOTE that names
 of Macros may not be used as operands; instead, they are used
 as opcodes and the assembler will substitute the correct code
 at assembly time. Also note that "operands" for statements such
 as the TITLE and *INCLUDE statements are not operands in the
 sense described here and are subject to other restrictions.

 Constants

 ASMB allows binary, octal, hexadecimal, decima1, and ASCII
 constants according to the following conventions.

 Binary - Numbers formed from binary digits (0,1) and terminated
 by the character 'B'. Range:
 -1111111111111111B<=n<=1111111111111111B.
 Example: LD BC,10101101111010B

 Octal - Numbers formed from octal digits (0-7) and terminated by
 the character 'Q'. Range:
 -177777Q<=n<=177777Q.
 Example: LD BC,25572Q

 Hex - Numbers formed from hexadecimal digits (0-9 and A-F) and
 terminated by the character 'H'. A hex number beginning with
 a letter MUST be preceded by a '0' to distinguish it from a
 label or register name. Range:
 -0FFFFH<=n<=0FFFFH.
 Example: LD BC,2B7AH

 Decimal - Numbers formed from decimal digits (0-9) and EITHER
 left unterminated or terminated by the character 'D'. Range:
 -65535<=n<=65535.
 Example: LD BC,11130

 ASCII - Numbers represented by the ASCII character(s) itself
 (themselves) enclosed in single quotes. Range:
 ' ' through '~' which amounts to the values 20H through
 7EH, including all alphanumerics and punctuation.
 Example: LD BC,'+z'

 Page 18

 Note that each of the previous examples will produce the same value

 in the BC register upon assembly and execution.

 Current Program Counter - $

 The "$" character may be used in the operand of any opcode allowing
 expressions as operands. The "$" is used to represent the current
 location counter of the Assembler. Note that "$" points to the BEGIN-
 NING of the instruction which contains it and not to the end. An
 example of the way to use it is:

 DATA: DB 0,11,3,2,7,24,17
 COUNT: EQU $-DATA

 The name COUNT thus has the value of seven, because this is the number
 of entries in DATA (the address of DATA subtracted from the current
 location). Now elsewhere in the source program, the name COUNT can
 be used to stand for the number of entries in DATA. There is great
 advantage to this representation; if it becomes necessary to change
 the number of entries of DATA and re-assemble, the value of COUNT
 will be changed automatically. Whereas if an absolute 7 were used
 instead of COUNT, every occurrence of the 7 in the source program
 would have to be changed.

 The "$" is often used in another way which is actually poor programming
 practice, and that is to use the "$" in a relative jump instruction.
 The best way to handle relative jumps is to label the location to be
 jumped to, and use this label as the operand of the jump instruction.
 ASMB will then calculate the correct displacement (see also "range
 error" in Chapter 6). Remember that "$" represents the location coun-
 ter at the start of the CURRENT instruction.

 Expressions and Operators

 The Assembler allows expressions to be used as operands, which it
 evaluates at assembly time and places the calculated values in the
 object code. These expressions may be used in place of either address
 or constant operands, provided they do not evaluate to an illegal
 quantity. The following operators may be used to form expressions.
 Operators which are symbols (eg, "+") should NOT be separated from
 their operands by a space. Operators written as one or more letters.
 MUST be separated from their operands by a space. It is sometimes
 desirable to group operations; however, parentheses could cause con-
 fusion since they are also used for memory references. Therefore,
 brackets ("[" and "]") are also acceptable to group the operands of
 expressions. Parentheses may be used provided they do not begin an
 expression or enclose one. Some examples will illustrate this; the
 following are legal expressions, but they may be different from what
 the programmer wished:

 LD A,(X+Y)/Z
 LD BC,(Q+R-S)

 Page 19

 In the first example the "/Z" is ignored and the expression evaluates
 to the contents of the address X+Y. The expression of the second
 example means the contents of the address given by Q+R-S. These
 examples may be rewritten slightly to change their meanings:

 LD A,[X+Y]/Z
 LD BC,[Q+R-S]

 Now in the first example, the QUANTITY of X added to Y and divided by
 Z is loaded into A, and not the CONTENTS of this address. In the
 second example also, the-brackets mean QUANTITY, whereas parentheses
 would mean CONTENTS. (Note that neither brackets nor parentheses are
 required in this example.) An example in which either parentheses or
 brackets may be used because because the meaning is not ambiguous is:

 ADD A,Z/(X+Y)

 The following lists the legal operators for expressions along with
 an explanation of each:

 + Addition or Plus - binary or unary
 - Subtraction or Negative - binary or unary
 * Multiplication
 / Division
 MOD Modulus - compute the remainder of a division
 X MOD Y is defined to be X-(Y*INT(X/Y))
 if X=23 and Y=7 then X MOD Y=2
 > or GT Greater Than - true if the left operand is
 greater than the right operand
 GE Greater than or Equal - true if the left operand is
 greater than or equal to the right operand
 < or LT Less Than - true if the left operand is
 less than the right operand
 LE Less than or Equal - true if the left operand is
 less than or equal to the right operand
 = or EG Equals - true if the left and right
 operands are equal
 NE Not Equal - true if the left and right
 operands are not equal
 SHL n Shift Left Logical - shift n places
 if X=2AH then X SHL 1=54H
 SHR n Shift RIGHT Logical - shift n places
 if X=2AH then X SHR 2=0AH
 NOT Logical Not - unary
 AND Logical And -
 if X=C0H and Y=47H then X AND Y=40H
 OR Logical Or -
 if X=C0H and Y=47H then X OR Y=C7H
 XOR Exclusive Or -
 if X=C0H and Y=47H then X XOR Y=87H

 ASMB considers these operators to have a hierarchy that determines
 which take precedence over others. The list which follows gives this
 hierarchy, progressing downward from those of highest priority to
 those of lowest priority; all those operations on any given line are

 Page 20

 of equal priority. Thus, operators which are on the same line of the

 hierarchy would be evaluated from left to right as they occur in an
 expression. However, operators or parts of expressions enclosed in
 parentheses or brackets are evaluated first, beginning with the inner-
 most set. The hierarchy is:

 *, /, MOD, SHL, SHR
 +, - (unary)
 +, - (binary)
 NOT (unary)
 AND
 OR,XOR
 >, <, =, GT, LT, EQ, NE, LE, GE

 All operations not marked are assumed to be binary. If the result of
 an expression is 0, the expression is false; if the result of an ex-
 pression is other than 0 (specifically -1), the expression is true.
 Also two operands which are equal result in a true expression; two
 that are not equal result in a false expression. This information is
 important for determining how to satisfy the IF operand. See the
 chapter on Conditional Assembly and Macros for more information on the
 IF statement. Also, see the chapter on Error Messages (specifically
 "Expression Error") for information on which of the above operators may
 be used with labels belonging to relative (REL) program segments.

 +++++++
 Remarks
 +++++++

 The remarks field is free-format including any printable ASCII
 characters as long as the comment is preceded by a ';'. The
 remark may follow an opcode, operand, or label or may exist on
 a line by itself. The ';' may be in column one if it is desired
 to have the remark on a line by itself. Multiple blanks or tabs
 may be used before or within the remark to improve readability. A
 CR-LF terminates the remark. Remarks may appear on any line, ie, fol-
 lowing any of the legal opcodes or pseudo-ops except TITLE and FORM.

 Page 21

 **
 CHAPTER 4: PSEUDO-OPCODES RECOGNIZED BY THE ASSEMBLER
 **

 The following section contains an alphabetical list of the pseudo-ops
 recognized by ASMB. They are all listed here for convenient reference;
 however, several-of the pseudo-ops are described in other sections.
 Certain of the pseudo-ops require labels; others require no label.
 More information on this may be found under "missing label" and "label
 not allowed" in the chapter on error messages. Macros and Conditional
 Assembly are explained in detail in a separate chapter.

 +++++++++++++++++++++++++++++++
 Alphabetical List of Pseudo-ops
 +++++++++++++++++++++++++++++++

 ===========================
 ABS (Absolute code segment)
 ===========================
 The ABS pseudo-op is described in the Source Code Segments section at
 the end of this chapter.

 =========================
 COM (COMmon code segment)
 =========================
 The COM pseudo-op is described in the Source Code Segments section at
 the end of this chapter.

 ========================
 DATA (Data code segment)
 ========================
 The DATA pseudo-op is described in the Source Code Segments section at
 the end of this chapter.

 ========================
 DB or DEFB (Define Byte)
 ========================
 The DB pseudo-op is used to tell the Assembler to reserve a byte or
 string of bytes as data in the object code. The bytes may be speci-
 fied using any of the forms of constants described in the Constants
 section of Chapter 3, or as a series of labels which have been
 previously defined or EQUated to a value. NOTE that if the value
 of the label or constant exceeds the range 0 to FFH (or its equivalent
 representation in decimal, octal, or binary), the DB will generate an
 expression error and insert a null. Also note that either of the
 terms DB or DEFB may be used. The format of the DB pseudo-op is

 <Label:> DB <Item or List of Items>

 Page 22

 where the label is optional and the item or list is any of: a byte,
 a string of bytes separated by commas, a string of ASCII characters,
 or an expression or string of expressions following the rules for
 expressions outlined in Chapter 3 (note that the expression must be
 equivalent to an absolute byte). The length of the string of bytes is
 limited by the length of a line for ASMB (80 total characters). A
 string of ASCII characters must be enclosed in single quotes. If it
 is desired to represent the single quote itself in a string, it must
 be given as two adjacent single quotes (''). Some examples will
 illustrate the use of DB:

 DB 'how are you?' (the string will be converted
 to ASCII bytes and stored
 in consecutive memory loca-
 tions in the object code)

 DB -2,-4,-6,10,11,17 (in order the hex bytes
 which will be stored
 are: FE,FC,FA,0A,0B,11)

 =========================
 DL or DEFL (Define Label)
 =========================
 The DL pseudo-op is similar to the EQUate statement and is used to
 define the value of a label. The major difference between DL and EQU
 is that DL can be used to set a label to different values at different
 times in the assembly of a particular program. The format of DL is

 <Label:> DL <Expression>

 where both the label and the expression are required. The expression
 may be in the form of another label or an arithmetic expression which
 is a combination of names or constants and which follows the conven-
 tions for expressions outlined in Chapter 3. However, note that the
 expression can NOT be a string of bytes, nor can the expression use
 any EXTernal names. The DL command is exactly like the SET pseudo-op
 of some other assemblers. An example of its use follows:

 START: LD SP,...
 :
 :
 COUNT: DL 4
 LD A,COUNT
 :
 :
 COUNT: DL COUNT-1
 LD B,COUNT
 :
 :
 END START

 In this example COUNT is redefined later in the source program from
 its original value. Note that only the original definition of COUNT
 need be changed for both of them to be changed upon re-assembly.

 Page 23

 It's important to note here that the DL command is quite unlike the DB,
 DM, DS, and DW commands although their formats all similar. These
 other commands all cause the Assembler to reserve a specified number
 of bytes in the object code, whereas DL is an Assembler DIRECTIVE but
 does NOT reserve any bytes. The DL statement is used to define a value
 or values internally to ASMB.

 ===========================
 DM or DEFM (Define Message)
 ===========================
 The DM pseudo-op is exactly similar to the DB pseudo-op except that
 the DM command sets the high bit (Bit 7) of the last byte in the string
 of bytes following the command, when this string is converted to object
 code. This is a very convenient feature for defining ASCII strings
 (in which Bit 7 is not used), provided the user-program tests this

 bit to determine the end of a string. Note that the DB command leaves
 the high bit of the last byte unchanged. The format of DM is

 <Label:> DM <Item or List of Items>

 where the label is optional and the item or list is any of: a byte,
 a string of bytes, a string of ASCII characters, or any expression
 or string of expressions following the rules for expressions outlined
 in Chapter 3 (expression must evaluate to be 8-bit absolute, however).
 As was the case for DB, a string of ASCII characters must be enclosed
 in single quotes ('). If it is desired to represent the single quote
 itself in a string, it must be given as two adjacent single quotes.
 An example of the use of DM is

 :
 CR: EQU 0DH
 LF: EQU 0AH
 :
 STRING: DM 'this is a string',CR,LF
 :

 In this example the last byte of the string (LF or 0AH) would be
 placed in the object code as 8AH with the high bit set. Note that
 the length of a DM command is limited to the 80-character total line
 length of ASMB. Allowing for a space in column 1, the characters
 "DM", a space, the opening "'", and the CR at the end of the line; this
 means that the maximum length of a single string using the DM command
 is 74 characters. However, preceding DB statements may be used to
 accommodate longer strings.

 ===========================
 DS or DEFS (Define Storage)
 ===========================
 The DS pseudo-op is used to tell the Assembler to reserve a specified
 number of bytes in the object code for storage. Note that ASMB will
 not insert any particular values in these reserved bytes. The format
 of the DS command is

 <Label:> DS <Expression>

 Page 24

 where the label is optional and the expression is either a constant
 or an expression which evaluates to an absolute and which follows
 the rules for expressions outlined in Chapter 3. Please note that all
 the terms of the expression used MUST have been previously defined in
 the source code or an error will result. A constant value of 1 causes
 ASMB to reserve one byte. An example of DS is

 ADDRSTABL: DS 20

 in which 20 bytes are reserved by a program to be used as an Address
 Table of 10 entries (two bytes per entry). Note that either of the
 terms DS or DEFS is allowed by the Assembler.

 ========================

 DW or DEFW (Define Word)
 ========================
 The DW pseudo-op is used to tell the Assembler to reserve a word or
 string of words in the object code. A word is defined to be 2 bytes.
 Thus, the DW pseudo-op might be used to specify a look-up table of
 absolute addresses. The words may be specified using any of the forms
 of constants described in the Constants section above, or a label which
 has been previously defined or EQUated to a word. Note that either of
 the terms DW or DEFW is recognized by ASMB. Also note that the Assem-
 bler places the low byte FIRST, treating every word of two bytes as
 though it were an address. For example, the word "0C923H" would appear
 in the object file as the two bytes, "23H" followed by "C9H". Likewise,
 if LABEL1 had been previously defined as "0C923H", a "DW LABEL1" would
 generate the same two bytes, "23H" followed by "C9H". This follows the
 conventions described elsewhere for expressions or labels used as ope-
 rands anywhere in the source code. In general the DW pseudo-op is
 associated with addresses and the DB statement with data; however, this
 is by no means an absolute. The DW pseudo-op is a very convenient way
 for entering addresses because the user does not need to keep track of
 placing the low byte before the high byte; simply enter an address as
 it is written. The format of DW is

 <Label:> DW <Item or List of Items>

 where the label is optional and the item or list is any of: a word,
 a string of words, or an expression or string of expressions following
 the rules for expressions outlined in Chapter 3 and evaluating to an
 absolute word or string of words. The length of the string of words
 is limited to the 80-character total line length expected by ASMB.
 However, successive DW commands may be given to accommodate longer
 tables of words.

 Unlike the DB statement, an expression which exceeds the legal range
 for a DW will not cause an "expression error". Instead, the expression
 will be evaluated modulus 65,536. See "value error" in the chapter on
 error messages for a further explanation of this. Note, however, that
 with the DW statement ASCII character strings longer than two bytes are
 not allowed. Some examples will illustrate these ideas:

 DW 'AA' (evaluates to 4141H)
 DW 'A' (evaluates to 0041H)

 Page 25

 DW 'ABC' (illegal, expression longer
 than one word)
 DW 100H,1ACH,-814 (multiple expressions, evaluates
 to the hex bytes, in order.
 00,01,AC,01,D2,FC)

 =====================
 END (End of assembly)
 =====================
 The END pseudo-op is used to terminate assembly of a block of source
 code. The format of END is

 <Label:> END <Expression>

 where the label is optional and the expression is subject to these
 rules: ONLY the main module of a program should have an expression or
 name following, and this module MUST have this expression. The expres-
 sion should be equivalent to the entry point of the module at which
 execution will begin. All other modules are then terminated with the
 END statement alone and are thus considered by ASMB to be sub-modules.
 The reason for this convention is that the Linker/Loader must know in
 which of the modules and at what address to begin execution. The
 quantity in the Expression may contain any legal operators (see section
 on Expressions in Chapter 3). Following is a sample use of the END
 statement to terminate assembly of a main module:

 ENTRY MAIN
 MAIN: LD SP,1800H
 :
 :
 END MAIN

 whereas this example shows termination of a sub-module to be linked
 to the main module:

 EXT MAIN
 BEGIN: LD A,1O
 :
 :
 END

 The END command is a signal to the Assembler that a logical body of
 code is complete. Therefore, only one END statement should appear
 in a module. Should the END appear in the middle of a block of code,
 everything following the statement will be ignored by ASMB.

 ============================
 ENDIF (END of IF definition)
 ============================
 The ENDIF pseudo-op is used to terminate Conditional Assembly of a
 block of code which follows an IF statement. The formats of IF and
 ENDIF are described in detail in the following chapter on Macro and
 Conditional Assembly.

 Page 26

 =====================================
 ENTRY (Entry point for these modules)
 =====================================
 A program module may be assembled with unresolved addresses providing
 they are declared EXTernal in that module. Any address declared
 EXTernal to one module must be declared an ENTRY in another module.
 These two modules are eventually linked. Since these addresses are
 unresolved, they are represented in the EXT and ENTRY statements as
 label names. The names then become a part of the .REL file. The
 Linker/Loader reads the .REL files at run time, determines the unre-
 solved addresses, and places their correct values in those bytes which
 expect the addresses. If the Linker is unable to resolve an address,

 it prints the undefined label name an the console followed by an
 asterisk (see Part II for more information on LINK).

 The ENTRY pseudo-op is used to declare in a source-file that that file
 contains the entry point(s) of the listed names. These names may be
 label names of subroutines, or program or data blocks. The format of
 the ENTRY command is

 (no label) ENTRY <Namel,Name2,...>

 The number of names used as operands of the ENTRY pseudo-op is limited
 only by the total line length (80 characters). Extra names in ENTRY
 not actually defined in the source-file will produce the error message
 "undefined symbol". ENTRYs may appear anywhere within a program
 module, but are typically written at the top of a file to be easily
 seen in the print-listing. ENTRY labels (standing for corresponding
 addresses) can be referenced by any other module which declares those
 names to be EXTernal (see EXT section). Refer to Part II on the Linker
 for information on linking these modules at run time.

 Below is an example of a module which uses an ENTRY statement to
 demark two subroutines and a table of data:

 ENTRY METRIC,ENGLIS,CONTBL
 METRIC: ... ; metric-to-English conversions
 :
 RET
 ENGLIS: ... ; English-to-metric conversions
 :
 RET
 CONTBL: ... ; conversions table
 END

 The corresponding example of a program module which calls these sub-
 routines is given with the description of EXTernals.

 ============
 EQU (Equate)
 ============
 The EQU pseudo-op is used to inform the Assembler that two named
 quantities are equivalent. The format of EQU is

 <Label:> EQU <Item>

 Page 27

 where the label is required and the item is any of: a constant, an
 address, a label, or an expression following the rules given in
 Chapter 3. Note that all the terms of the expression MUST have been
 previously defined. Also, the expression may NOT involve the names
 of any EXTernals.

 The EQU statement is used to equate a label to a particular value.
 Once this label is defined, it is defined for the entire source
 program. The DEFL command should be used for labels which are to
 change within a module. EQU is a useful statement for simplifying or

 clarifying source code. For example suppose the ASCII characters for
 carriage return (CR) and line feed (LF) were to be used throughout a
 source program. Instead of using their values, a clearer procedure
 would be to enter the lines:

 CR: EQU 0DH
 LF: EOU 0AH

 somewhere in the source program and then use the names "CR" and "LF"
 to stand for the values as in:

 STRING: DB 'end of text',CR,LF

 The EQU statement is also very valuable for changing a quantity quickly
 and in all places. Suppose that it is desired to test a program with
 different values for a timer. Suppose further that this value is used
 10 times throughout the source code. If the original value is used in
 each of those 10 places, then all 10 will have to be changed to change
 the timer. However, if each of the 10 places uses the label "TIMER"
 and the following statement appears somewhere in the module:

 TIMER: EQU <value>

 then this statement can very easily be changed by editing. This as-
 sures upon re-assembly that all the places TIMER occurs will be changed.

 =====================================
 EXT or EXTRN (these modules External)
 =====================================
 Using ASMB, program modules may be assembled with unresolved addresses.
 The EXT pseudo-op is used to declare in a source-file that that file
 must depend on some other module(s) to satisfy certain EXTernal names.
 The EXT and corresponding ENTRY names become parts of the two .REL
 files; the addresses are then resolved at run time. Further informa-
 tion about this is described in the first paragraph under the ENTRY
 pseudo-op; information about linking and running files is given in
 Part II on the Linker. The format of the EXT command is

 (no label) EXT <Name1,Name2,...>

 where the names may be label names of subroutines, or program or data
 blocks. Note that Module Names under the NAME pseudo-op may NOT be
 used in the EXT fields of other modules. The number of names used as
 operands in an EXT pseudo-op is limited only by the total line length

 Page 28

 of ASMB (80 characters). Either of the forms EXT or EXTRN is accepted
 by the Assembler. EXTs may appear anywhere within a program module,
 but are typically written at the top of a file to be easily seen in the
 print-listing. When the assembled modules are linked and run, all
 EXTs must be satisfied by corresponding ENTRYs in other modules or the
 Linker will return an error message.

 It is important to note that label names declared EXTernal to a module
 may be used as operands within the module, but may NOT be used in

 expressions. For example the following lines would be legal:

 EXT COUNT
 :
 :
 LD A,COUNT
 :

 whereas the following would be illegal and would generate an error:

 EXT COUNT
 :
 :
 LD A,COUNT+3

 Also note that a label name declared as an EXTernal to a module may
 NOT be redefined (ie, used in the label field) within that module.

 Below is an example of a module which uses an EXTernal statement to
 declare the names of two outside subroutines and a table of data:

 EXT METRIC,ENGLIS,CONTBL
 START: ...
 :
 LD HL,CONTBL
 LD A,(HL)
 CALL METRIC
 :
 INC HL
 LD A,(HL)
 CALL ENGLIS
 END START

 The corresponding example of the module which contains these subrou-
 tines is given with the description of ENTRY pseudo-ops.

 =====================
 FORM (paper Formfeed)
 =====================
 The FORM command is used to advance the paper in a print listing to
 the top of the next page. The format of FORM is

 (no label) FORM (no operands)

 Page 29

 FORM is used for clarity in a print-listing, as the beginning of a
 routine can be more clearly identified if it starts at the top of a
 page. The FORM command in the source code will not be printed on the
 listing. Multiple FORM commands may also be used; however, each page
 will be numbered and titled by ASMB. The command "EJECT" may be used
 in exactly the same way as FORM to force a paper-feed to the top of
 the next page.

 The Assembler implements FORM by issuing a series of linefeeds to the
 printer; the number of linefeeds needed to reach the next page is

 determined by ASMB from the TOP= and PAGE= options. The only exception
 to this is that when TOP=0 has been-selected, an actual formfeed
 character is issued to the printer. In this case the printer will
 advance according to the paper size for which it is designed.

 ===============================
 IF (begin Conditional Assembly)
 ===============================
 The IF pseudo-op is described in the following chapter on Macro and
 Conditional Assembly.

 ======================================
 *INCLUDE (Include the given disk file)
 ======================================
 The *INCLUDE pseudo-op is used to specify a source-file on disk which
 is to be included in the assembly of the present source. The format
 of the *INCLUDE command is

 *INCLUDE <d:filename.ext>

 where d stands for the disk drive letter (A-D), and filename is the
 user's disk filename, which may or may not include a 3-letter extension.
 If the disk drive letter is omitted, ASMB assumes the file is on the
 current drive. It is IMPORTANT to note that the *INCLUDE statement
 MUST begin with the asterisk in column one. Hence, NO label field is
 permitted with this opcode. The filename may follow the *INCLUDE after
 at least one delimiter (space or tab). Another important point to
 notice about the *INCLUDE is that all of the given file is included in
 the present file. Hence, if the included file has an END statement,
 this END statement will terminate assembly of the present source when
 it is encountered. An example will illustrate this; suppose this is
 the source-file to be assembled:

 BEGIN: LD SP,...
 :
 :
 *INCLUDE A:USERFILE.Z80
 LD HL,...
 LDIR
 END

 and suppose the following is USERFILE.Z80:

 START: LD BC,...
 LD DE,...
 END

 Page 30

 Because the USERFILE contains an END statements the Assembler will
 never see the LD and LDIR instructions of the source-file. Assembly
 will be terminated following the inclusion of USERFILE. To avoid this
 problem simply leave off the END statements of files which are to be
 INCLUDED in the assembly of other files, or put the *INCLUDE statement
 as the.last one in a source program and leave off that source's END
 statement.

 The *INCLUDE statement is particularly useful in conjunction with
 Conditional Assembly blocks of code (see the discussion of the IF
 statement in the next chapter). For example a file may be INCLUDEd
 depending on whether or not an IF statement is satisfied. Also, the IF
 statement can be used to determine which of several files will be
 INCLUDEd. An example of this use of *INCLUDE follows; one of three
 different files will be included and the others ignored dependent on
 the value of the label DECIDE (defined earlier in the source):

 :
 :
 IF DECIDE EQ 0
 *INCLUDE A:MOVROUTN.Z80
 ENDIF
 IF DECIDE EQ 1
 *INCLUDE B:SAVROUTN.Z80
 ENDIF
 IF DECIDE EQ 2
 *INCLUDE LOADROUT.Z80
 ENDIF
 :
 :

 where the first file would be found on drive A, the second on drive B,
 and the third on the current drive. The entire block of code above
 could be put in a file of its own called DECIDFIL. The user source
 file would initialize the variable DECIDE using an EQU or DL statement
 and give the command "*INCLUDE DECIDFIL". Then, based on the value of
 DECIDE, the routine which would be included would be either the move,
 save, or load routine above.

 *INCLUDEs may be nested up to four levels; more than this will generate
 a nesting error. The example above illustrates two levels of nesting:
 the user file INCLUDEs the file DECIDFIL, which in turn INCLUDEs one
 of the files MOVROUTN, SAVROUTN, or LOADROUT. It is also possible to
 write a source program which consists of *INCLUDEs only.

 ==
 LIST (use following commands to generate Listings)
 ==
 The LIST pseudo-op is used to set the Assembler print-listing options.
 This at NO TIME affects the actual object code put out by ASMB. It
 is simply used to suppress undesired or repetitive sections of the
 listing file. The format of the LIST statement is

 (no label) LIST <Option1,Option2,...>

 Page 31

 where the options are taken from the list of six legal operands which
 follows this paragraph. The number of options which may be placed on
 a line is limited only by the line length. However, 3 options is the
 practical limit because more than this will result in duplicate or
 conflicting options. Options may be given in any order. If conflic-
 ting options are given (conflicting options are the pairs gen-nogen,

 cond-nocond, on-off), only the last one of the pair on the line will
 be used.

 The LIST command may be used as often as desired throughout a source-
 code file. However, note that if the List Options of Chapter 2 are
 issued at the time of the CALL of ASMB, these will override any corres-
 ponding LIST commands given in the SOURCE. For example if the List
 Option "Gen" is specified when calling ASMB, all "Nogen" operands of
 LIST in the source would be overridden. However, the OTHER operands of
 LIST in the source would still be effective. Following are the six
 allowable operands of the LIST pseudo-op. Information on the use of
 List Options when calling ASMB will be found in Chapter 2.

 OFF (turn Off assembly listing)

 Suppress print-listing until end of code or an ON option. This option
 is de-selected when assembly of a program begins (before encountering
 a LIST pseudo-op).

 ON (turn On assembly listing)

 List print-listing to disk-file or console until end of code or an OFF
 option. ON is the default when assembly of a source file begins.

 COND (begin listing Conditional Assemblies)

 Force the generation and printing of all blocks of code which are parts
 of IF definitions, until end of code or a NOCOND option. COND is the
 default when assembly of a source file begins; therefore, it would
 generally be expressed only to override a previous NOCOND option. Note
 that COND forces the printing of IF statements but NOT the assembly of
 them; that is determined by whether the IF statement is true or false.

 GEN (begin listing Generated Macros)

 Force the printing of the Macro expansion following every Macro
 call, until end of code or a NOGEN option. GEN is the default when
 assembly of a source file begins; therefore, it would generally be
 selected only to override a previous NOGEN option.

 --
 NOCOND (do Not print Conditional Assemblies)
 --
 Force no printing of IF or ENDIF statements and no printing of IF
 definitions (the code following the IF) if the IF statement is false.

 Page 32

 In other words an IF definition which is not assembled due to its
 being false will not be listed in the print-listing either. This
 option will remain selected until the end of code or a COND option.
 The option is de-selected when assembly of a program begins and thus

 must be first selected using the LIST pseudo-op. Selection of NOCOND
 in NO WAY affects the object code of an assembled file.

 NOGEN (do Not print Generated Macros)

 Force no printing of Macro expansions. However, note that Macro
 definitions are always printed as are the Macro calls themselves; it
 is only the code which the Macro generates which is not printed.
 This option will remain selected until the end of code or a GEN option.
 The option is de-selected when assembly of a program begins and thus
 must be first selected using the LIST pseudo-op. Selection of NOGEN
 in NO WAY affects the object code of generated macros of an assembled
 source file.

 ==============================
 MACRO (begin Macro definition)
 ==============================
 The MACRO pseudo-op is described in the following chapter on Macro and
 Conditional Assembly.

 ===========================
 MEND (Macro definition End)
 ===========================
 The MEND pseudo-op is used to terminate the block of code which forms
 a Macro Definition. The formats of MACRO Definitions and Calls, and
 the MEND statement are described in detail in the following chapter.

 ==================
 NAME (module Name)
 ==================
 The NAME pseudo-op is used to assign a name to a particular module
 for use by the Linker. This name is, however, written in alphanumerics
 so it is also useful to the programmer for remembering the purpose of
 the module. The format of NAME is

 (no label) NAME <Module Name> (1-6 characters)

 where the module name should follow the same syntax rules as for
 labels. The NAME statement is optional; it is not required for linking
 of modules. However, if the NAME statement is omitted, the Assembler
 automatically assigns the first six characters of the filename to be
 the module name. Note that NAME is different from TITLE. The TITLE
 statement merely tells ASMB to print a heading at the top of each
 page of the listing but has no effect on the object code; NAME forces
 the name of the module to be saved as part of the .REL file. Thus,
 a library manager program is able to locate .REL files by name.

 Page 33

 ============
 ORG (Origin)
 ============
 The ORG pseudo-op sets the Assembler location counter and is used when
 it is desired to start assembly of a block of code at a particular
 address. This location may be set by the user to be absolute, or it
 may be left up to the Assembler to determine the value of the ORG. The

 location counter may be set to a value as often as desired in a source.
 program; that is, multiple ORG statements may be used. The format
 of the ORG is

 <Label:> ORG <ABS Address, Label Name, or Expression>

 where the label is optional but the expression or address is required.
 The VALUE of the ORG (ie, the address of the first statement following
 the ORG) is determined by the value of the label or expression. Note
 that all the terms used in the expression MUST have been previously
 defined. The TYPE of code segment which will follow the ORG is
 determined by the type of code segment to which the label or expression
 belongs. For example, the statement "ORG LEFTOFF" would continue
 a COMmon area if LEFTOFF belonged to a COMmon area, and would continue
 a RELocatable area if LEFTOFF belonged to a RELocatable program area.
 In either case, however, the value of the ORG would be determined by
 the value of LEFTOFF. The statement "ORG 100H" would begin an
 ABSolute program area since the address is absolute. Note that the
 ORG pseudo-op does not reserve any bytes, but merely specifies an
 address at which those bytes are to begin.

 ==============================
 REL (Relocatable code segment)
 ==============================
 The REL pseudo-op is described in the Source Code Segments section at
 the end of this chapter.

 ====================================
 REM (Remark beginning in column one)
 ====================================
 The REM statement is another method of designating a remark; however,
 REM assures that the remark is always printed beginning in column 1 of
 a print-listing without any characters preceding (as with the ";").
 The REM pseudo-op itself is never printed as is also the case with the
 FORM and TITLE printer-controls. The format of REM is simply

 (no label) REM <Remark Phrase> (as many char. as will fit line)

 Some printers (for example the CROMEMCO 3700-series Printers) will
 expand a line if the line contains the Control-N (0EH) character.
 This is the reason for the REM statements to be able to give this
 character at the beginning of a remark and have the printer expand the
 line to make it more noticeable. However, when using the ^N feature,
 the user must take care that the remark to be printed does not exceed
 HALF the width specification of the Width= option. For example most
 listings use the default value of Width=79; thus, the number of char-
 acters in the REM statement which uses the ^N should not exceed 39.
 This is to prevent the printer from printing off the side of the paper.
 Also note that the maximum length of a REMark is 74 characters.

 Page 34

 ===
 TITLE (Title to be printed at top of each page)
 ===
 The TITLE pseudo-op is used to print a title at the top of each page

 a print-listing beginning in column 1. The format is simply

 (no label) TITLE <Title Phrase> (as many char. as fit on line)

 As with the REM statement, the Title Phrase may contain the character
 Control-N (0EH). On CROMEMCO 3700-series printers this character will
 expand the line to twice its normal width. For this reason when using
 the ^N in a TITLE statement, the number of characters in the Title
 Phrase should not exceed half the number of characters which will be
 specified in the Width= option. The TITLE command should be the first
 line of a program in order to be printed on Page 1 as well as the
 other pages. Note that titles may be changed in the middle of a source
 program simply by giving a new TITLE command. Also note that in such
 a case TITLE causes an automatic FORM feed. The maximum length of a
 Title Phrase is 72 characters; strings longer than 72 are truncated.
 The Assembler inserts a blank line where the Title Phrase would be if
 TITLE is not specified.

 Page 35

 ++++++++++++++++++++
 Source Code Segments
 ++++++++++++++++++++

 Perhaps the single most important feature of the CROMEMCO Assembler is
 its ability to generate relocatable code. This feature allows a user
 to assemble a number of modules of source code separately, and link
 them together in any order at run time. It also means that the object
 code can be executed at nearly any address in memory (it is generally
 not advised to assemble and run programs over portions of CDOS). The
 Assembler can assemble all data in locations separate from the program
 area so that either area may be programmed into ROM.

 There are four special pseudo-ops which inform the Assembler what type
 of object code to generate. This section describes these four Source
 Code Segment pseudo-ops and the ways they are used. Explanations of
 the way relocatability works are given in the following, and informa-
 tion on the CROMEMCO Linker/Loader may be found in Part II.

 ========
 ABSolute
 ========
 The ABS pseudo-op precedes a code segment which is to be assembled in
 absolute code (absolute addresses). The Linker will consider this code
 to be non-relocatable. The format of ABS is simply

 (no label) ABS (no operand)

 All the code following the ABS will be considered to be absolute until
 another Code Segment pseudo-op is given. The Assembler defaults to REL
 upon start of assembly of a program; thus, if no pseudo-op is given,
 the object code will be relocatable. ABS areas are addressed conti-
 guously throughout a source program unless ASMB is told otherwise by
 the use of ORG statements. At the beginning of a program the program
 counter for ABS is set to 0 (however, unless ABS is specified, ASMB
 assumes the REL pseudo-op) unless the user overrides it with an ORG.
 For subsequent ABS areas the current contents of the program counter

 (which is the address at which the last ABS left off) will specify
 the loading address. Some examples will help illustrate these ideas.
 Consider the following:

 ABS
 START: LD SP,...
 :
 :
 END

 In this example the entire source program is to be considered absolute
 and the addresses are to begin at 0. If the same example were written:

 ORG 1000H
 START: LD SP,...
 :
 :
 END

 Page 36

 the entire source program is again to be considered absolute with the
 addresses beginning at 1000H. Now consider two ABS areas and a DATA
 scratch-pad area between them:

 ABS
 START: LD SP,...
 :
 :
 STOP: LD HL,...
 DATA
 ADDR1: DS 2
 ADDR2: DS 2
 :
 ABS
 NEXT: LD BC,...
 :
 :
 END

 In this example assembly will begin at absolute location 0 because no
 ORG statement is specified. Assembly of the second ABS area will begin
 with the next address following the LD instruction at STOP. Note that
 an ORG statement could have replaced either ABS statement to cause the
 code segment following to assemble elsewhere. The DATA area will be
 assembled relocatable.

 ======
 COMmon
 ======
 The COM pseudo-op precedes a data segment which is to be assembled
 common to more than one module. The name and size of the COMmon(s)
 are then saved in the .REL file; this enables the Linker to load the
 addresses correctly at run time such that the given area is common
 to several program modules. The CROMEMCO Linker/Loader is the same
 one used to link .REL files produced by the CROMEMCD FORTRAN IV

 Compiler. Hence, COMmons are a very convenient way of enabling a
 machine language subroutine to use a FORTRAN data area, or as a fast
 way to pass arguments between FORTRAN and machine language programs.
 COMmons may be used in this way for assembly language programs as
 well; two or more program modules may use the same data scratch-pad
 area for passing arguments. EXT and ENTRY statements which apply to
 data areas may be replaced by COMmons. (When interfacing FORTRAN to
 machine language routines, allow four bytes for Real, two bytes for
 Integer, and one byte for Logical variables.) The format of COM is

 (no label) COM <Common Name> (1-6 characters)

 Note that the full word COMMON is NOT allowed by ASMB. The Common Name
 may be omitted in the above, and this is considered the blank common.
 If the name is used, it should follow the rules for labels given in
 Chapter 3. Following the COM command are the labels and pseudo-ops
 allocating storage. Note that when COMmons are used by more than one
 program module, they must either be the same length in every module,
 or the module which is linked first must contain the longest COMmon
 specification so that LINK allocates at least that number of bytes.

 Page 37

 Also, note that the COMmons of different modules DO NOT have to have
 the same labels on the data. Thus, this COMmon in one module:

 COM DATA
 ADDRTB: DS 20
 COMMTB: DS 10

 and the following COMmon in another module:

 COM DATA
 COUNT: DS 4
 LOOKUP: DS 26

 would assemble and link correctly; they are the same length and the
 data labels are transparent to the Linker.

 There are 15 different COMmons of equal level (ie, there is no
 hierarchy) allowed by the Assembler in any one program; exceeding
 this number will generate an error. All the code following the COM
 will be considered to be a common until another Program Segment
 pseudo-op is given. A common may also be continued later in the
 same program segment by giving the COM command with the same name as
 before. Using a different name will cause the COM location counter
 for THAT common to start over at zero. Remember that COMmons of the
 same name need not be the same length in every module as long as the
 module containing the longest COMmon specification is linked first.
 An example will illustrate some of the features of COM:

 BEGIN: LD SP,...
 :
 :
 COM INSTRC
 TABLE1: DS 50

 REL
 LD HL,...
 :
 :
 COM ADDRES
 LOCATE: DS 20
 COM INSTRC
 TABLE2: DS 50
 END

 Both TABLE1 and LOCATE in the above will begin at COM location-counter
 zero; however, note that they are different commons. TABLE2 will begin
 at location counter 50 for COM INSTRC (thus COM INSTRC reserves 100
 total bytes as storage). Also note the use of the REL statement to
 return to RELocatable code following the end of the first part of COM
 INSTRC. Generally the DS pseudo-op is used to allocate storage area
 for a COMmon; if the DB, DM, or DW statements are used, bear in mind
 that the loaded bytes of the first COMmon may be over-written by the
 second loaded COMmon when they are linked.

 Page 36

 ====
 DATA
 ====
 The DATA pseudo-op precedes a program segment which is to be assembled
 as a block of data. LINK will consider this code to be rolocatable.
 The format of DATA is simply

 (no label) DATA (no operand)

 All the code following the DATA will be considered to be part of the
 data block until another Code Segment pseudo-op is given. The DATA
 pseudo-op is very similar to REL; DATA is provided so that the user
 may maintain separate data and program code segments in a source file.
 Thus, the program segments may be programmed into ROM following their
 being linked and loaded, and the data segments may remain in RAM, for
 example. All DATA segments of a program are based upon the DATA
 location counter, which is set to zero upon the start of assembly.
 As is the case with ABS and REL, all DATA segments in a program will
 be addressed contiguously if ORG statements are not used to change the
 addresssing. Also, remember that an ORG will cause assembly to
 continue with the type of Code Segment to which the expression of
 the ORG statement belongs. For example the following section of a
 source code program:

 DATA
 LABEL1: DS 10H
 REL
 LD A,...
 :
 :
 DATA
 LABEL2: DS 10H
 END

 would be assembled in exactly the same way as this section:

 DATA
 LABEL1: DS 10H
 REL
 LD A,...
 :
 :
 ORG LABEL1+16
 LABEL2: DS 10H
 END

 where the ORG statement has replaced the second DATA statement. Since
 LABEL1 belongs to a DATA area, the ORG statement tells ASMB to return
 to assembling in the DATA code segment without the need for the second
 DATA pseudo-op. For more information on the ORG see the list of
 pseudo-ops above.

 Page 39

 ===========
 RELocatable
 ===========
 The REL pseudo-op precedes a code segment which is to be assembled in
 RELocatable form. The Linker will recognize this code at run time,
 link it with any other relocatable modules, and load them into the
 desired address in memory. Relocatability works in this way: following
 assembly, the .REL file contains the locations of all bytes which
 contain unresolved addresses. At run time the Linker then determines
 the place at which the program is to be run and correctly fills in
 the unresolved addresses. As the modules are linked, LINK also prints
 the names of any still undefined labels (those declared in EXT
 statements).

 The Assembler defaults to the REL code segment upon start of assembly
 of a program and the REL location counter is set to zero. However,
 other code segment pseudo-ops may be specified throughout the source,
 and REL issued to return to relocatable code at the end of these
 segments. The format of REL is simply

 (no label) REL (no operand)

 The code following the REL will be considered to be relocatable program
 area until another Code Segment pseudo-op is given. REL areas are
 addressed contiguously throughout a source program unless ASMB is told
 otherwise by the use of ORG statements. Note, however, that the ORG
 will cause assembly to continue with the type of Code Segment to which
 the expression of the ORG statement belongs (see the example of this
 in the section above on the DATA pseudo-op). The REL statement is
 generally needed only to return to relocatable program code following
 the use of another Code Segment opcode. Note also that data may
 be included in the REL area. The DATA and REL pseudo-ops treat
 relocatable code in an identical manner; therefore, unless there is
 a specific reason for keeping the data and program areas separate,
 the DATA statement(s) could be eliminated.

 Page 40

 **
 CHAPTER 5: MACRO AND CONDITIONAL ASSEMBLY
 **

 Two of the most powerful features of the CROMEMCO Relocatable Assembler
 are Macro and Conditional Assembly. The purpose of this chapter is to
 define and explain these two features and illustrate their use with
 examples. However, the user should bear in mind that these examples
 only scratch the surface as illustrations of the uses of Macros. It
 is left up to the readers to adapt Macro and Conditional Assembly to
 their needs.

 +++
 Macro Assembly (MACRO definition and calls)
 +++

 Macros provide the user with a method of producing a block of in-line
 code in a source file without having to generate this block of code
 each time it is required. This block of code is known as the Macro body.
 Macros also allow a great deal more flexibility than in-line source
 code because of the ability to accept parameters. This means the Macro
 may be tailored to suit a particular purpose. For example suppose a
 user wishes to use a move routine which does a block move of 100 bytes.
 Later in the same program, a block move of 500 bytes is desired. Al-
 though these two routines could be written separately, it would be much
 easier to write a Macro which accepts the correct parameters and
 generates the correct block move. Some other advantages of the use
 of Macros are:

 -Rewriting repetitive blocks of code is not required. The
 code is written only once in the Macro.
 -Macros can be used to improve program readability and to
 create easily-read skeleton programs.
 -Macros written by a number of programmers can be collected
 in a Macro library which may be used by all. Eventually
 nearly entire programs may be written using the Macros in
 this library.
 -New Z-80 instructions may be designed using existing instruc-
 tions in a Macro (this is an instruction only to the
 Assembler; it is not possible to add instructions to
 the Z-80 Instruction Set).
 -An error found in a Macro need be corrected only once
 regardless of the number of times the Macro is called.

 Some users may wonder how Macros differ from subroutines, since
 subroutines may also be used to reduce the coding of frequently
 executed blocks of code. One distinction between the two is that
 subroutines branch to another part of the program while Macros
 generate in-line code. However, a Macro does not necessarily

 Page 41

 generate the same source code each time it is called. The source

 code the Macro generates can be changed by changing the parameters
 in the Macro Call. Also, Macro parameters can be tested at
 assembly-time by the Conditional Assembly (IF) statement. These
 two features enable a general purpose Macro Definition to generate
 customized source code for a particular situation. Thus, the
 biggest difference between Macros and subroutines is that Macro
 expansion and customized code result at assembly-time within the
 object code. Subroutines, on the other hand, reside in the source
 program, and require extra execution time (especially if the
 subroutines do any conditional operations). There is a trade-off,
 however, between the extra memory required for Macros (in-line code)
 and the longer execution time of subroutines. In most cases using
 a single subroutine rather than multiple in-line Macros will reduce
 the overall program size. However, the use of Macros may be more
 efficient in situations involving a large number of parameters.
 Note that Macros can call subroutines, and subroutines can contain
 Macro Calls.

 An example of a simple Macro Definition would perhaps illustrate some
 of the afore-mentioned points. Suppose that there were a number of
 times in a source program that it was desired to exchange the upper
 four and the lower four bits of the A register. Although a subroutine
 could be written to do this, the associated CALLs and RETurns would
 slow down execution time. Thus, to save typing when writing the
 source code, a Macro is used:

 ROTATE: MACRO
 RLCA
 RLCA
 RLCA
 RLCA
 MEND

 The general format of a Macro Definition can be seen from this example.
 The word ROTATE becomes the Macro name. Thus, to CALL this Macro one
 would simply use the word ROTATE as an opcode in the source code, and
 the Assembler would insert the four RLCA opcodes as in-line source code
 following the ROTATE Macro opcode. This is known as the Macro EXPANSION.
 The MEND statement informs the Assembler that the Macro Definition is
 complete. Suppose now that rather than be limited to having the Macro
 exchange the high and low bits of the A register only, it was desired
 to have it operate on any of the 8-bit registers. The following Macro
 Definition might be used in place of the above:

 ROTATE: MACRO #REGIS
 RLC #REGIS
 RLC #REGIS
 RLC #REGIS
 RLC #REGIS
 MEND

 This Macro uses the parameter REGIS, the value of which it will
 determine when the ROTATE macro is called. The "#" symbol is
 required to precede the parameter(s) everywhere it appears in a Macro

 Page 42

 Definition to distinguish it from other labels; however, this symbol
 is NOT required when specifying the parameter in a Macro Call. Since
 ROTATE now expects one parameter, the form of a Call would be:

 ROTATE <register>

 where the word "register" would be replaced with one of: A, B, C, D,
 E, H, or L. The Assembler would then generate in-line code using
 the correct register name. For example if the Macro Call "ROTATE H"
 was used, ASMB would generate the in-line code:

 RLC H
 RLC H
 RLC H
 RLC H

 Based on the above examples we now give the complete format of a Macro
 Definition and Call. A Macro is defined by:

 <Macro Name:> MACRO <#Parameterl,#Parameter2,...>
 <opcodes and
 operands which
 may use the
 parameters of
 the Macro statement
 and which form
 the Macro body>
 (no label) MEND (no operand)

 where the parameters are optional and are limited in number only by
 the length of a line for ASMB (80 characters). The Macro Name is
 required and is the name used when calling a Macro. The MEND is
 the Macro End statement and is required to inform the Assembler
 that the source code of the Macro is complete. The opcodes or
 pseudo-ops between the MACRO and MEND statements comprise the
 Macro Definition, and may be any legal Z-80 instructions, calls
 to other Macros, or ASMB pseudo-ops.

 There are a number of important points to note about the above
 format of Macros. First, note that when passing parameters to
 the Macro the parameter name must be preceded by the symbol "#"
 everywhere it appears in the Definition; however, it is NOT used
 to precede parameters in a Macro Call. The parameters are actually
 dummy names; they stand for a quantity which will be substituted
 at assembly time. Therefore, the same parameter name may be used
 in several separate Macro Definitions (for example #REGIS may be used
 more than once). The parameters MUST follow the syntax rules for
 whatever portion of code they represent. Note that the text itself
 of the actual (not dummy) parameter is substituted in the Macro
 Expansion. Thus, register names can be used rather than a value
 which stands for the register as in some other assemblers; see
 the above example where the letter H is used as the parameter.
 Another way this is useful is to substitute for letters in the
 opcode itself:

 Page 43

 ROTATE: MACRO #DIR,#REGIS
 R#DIRC #REGIS
 R#DIRC #REGIS
 R#DIRC #REGIS
 R#DIRC #REGIS
 MEND

 In this example either the command RLC or RRC could be generated by
 assigning the letter "R" or "L" to the first parameter. However,
 if the letter "Q" was used, this would generate the illegal opcode
 "RQC', causing an error message when the Macro is expanded. A last
 point to be made about parameters in Macros is that parameter names
 that appear early in a list should NOT be subsets of parameters that
 fall later in a list. This is because dummy parameter names do not
 have a delimiter (such as a colon) to inform the Assembler of their
 last character; note that parameter names do not follow the same
 syntax rules as label names. Dummy parameter names may be as many
 characters as will fit on the line and be composed of any printable
 ASCII characters. An example of an illegal use of parameters is:

 LOAD: MACRO #OPER,#OPERND

 where the user desired one parameter to be the operation and the other
 the operand. This is illegal as it stands because OPER is a subset
 of OPERND. A correct example is:

 LOAD: MACRO #OPERAT,#OPER

 Another important point to be made about the format of Macro
 Definitions concerns the way in which labels are defined. Labels
 appearing in DL statements within the Macro Definition are not
 subject to the following restriction because they can be multiply-
 defined (see section on Conditional Assembly for an example of the
 use of a DL and an IF statement to cause conditional Macro assembly).
 A label appearing on any other statement of a Macro Definition will
 generate a multiple definition error if that Macro is called more
 than once (the second expansion would also reproduce the label).
 To avoid this problem a general label name for Macros has been
 provided, which is used by assigning two letters to the label name
 followed by the characters "#SYM". These four characters are replaced
 by a four-digit number each time a Macro is called. The four-digit
 number starts at 0000 and is incremented by one each time ANY Macro
 is called, whether or not it is the given Macro. Thus, for example
 the dummy label name AA#SYM in this Macro:

 BITEST: MACRO ...
 :
 :
 AA#SYM: LD HL,...
 :
 JP AA#SYM

 would be assigned the actual label name AA0000 if BITEST was the first
 Macro called in the program. The next Macro call would increment this
 to AA0001, and the next to AA0002, etc. In general do NOT use #SYM

 Page 44

 as the name of a parameter in a Macro Definition; the effect of this
 is that the current value of #SYM will be used instead of the desired
 parameter.

 The final point to be made concerning the format of the Macro
 Definition concerns nesting of Macros. Macro Definitions may be
 nested indefinitely; this means there can exist a Macro Definition
 which completely contains a Macro Definition which completely
 contains a Macro Definition, and so on indefinitely. However, Macro
 Calls may be nested to eight levels maximum. This means there can
 exist a Macro Definition which contains a Macro Call, whose Macro
 Definition contains a Macro Call, whose Macro Definition contains
 a Macro Call, and so on up to eight levels deep. Exceeding this
 limit will generate a nesting error. Note that a Macro may also call
 itself, provided there is a Conditional way (see IF) of ending the
 self-calling before the ninth level. An example of nested Macro CALLS
 will be found in the examples section later in this chapter.

 Some special notes are necessary on nested Macro DEFINITIONS. The
 Assembler does not evaluate a Macro Definition within a larger,
 outside Macro Definition until the larger definition is called.
 This means that the outside Macro should be called BEFORE the inside
 Macro to avoid generating a phase error. The benefit of nesting
 Macro Definitions may not be obvious; the following example illus,-
 trates one level of nesting used to define several different Macros:

 DEFINE: MACRO #1,#2
 EX#1#2: MACRO
 PUSH #1
 PUSH #2
 POP #1
 POP #2
 MEND
 MEND

 This nested definition may then be called in a source program as follows:

 :
 DEFINE BC,HL
 START: ...
 :
 EXBCHL
 :

 The opcode "EXBCHL" was defined by the call to DEFINE; other calls to
 DEFINE could define such source code segments as "EXAFBC" or "EXBCDE".
 After the initial call to DEFINE the necessary PUSHes and POPs to
 generate a double register exchange will be inserted into the source
 code by the call "EXBCHL" used as an opcode. The DEFINE Macro could
 be resident in a Macro Library to further save typing. Note, however,
 that DEFINE must be called once for every Macro which it defines and
 that this call must precede the call to the nested Macro.

 Page 45

 The above functions could also have been implemented by the single
 Macro:

 EXCH: MACRO #1,#2
 PUSH #1
 PUSH #2
 POP #1
 POP #2
 MEND

 The difference here is that the parameters must be specified each
 time the Macro is called. For example a Call in a program would be:

 :
 EXCH BC,HL
 :

 Either of the above examples could be used to create a Macro to
 exchange register pairs. Note the differences between them. There
 is a more advanced example of nested Macro Definitions in the last
 section of this chapter.

 The above sections describing the details of a Macro Definition are
 provided for reference. However, a better feeling for the ways in
 which Macros may be used will come after these details are illus-
 trated by means of examples. The last section of this chapter
 provides examples of the uses and correct formats of Macro
 Definitions and Calls. The last thing to be described in this
 section is the format of the Macro Call:

 <Label:> <Macro Name> <Parameterl,Parameter2,...>

 The label is optional; the parameters are also optional if none are
 specified in the Macro Definition. That is, the parameters in the
 Macro Call must match those in the Macro Definition in number and
 order; they are NOT, however, preceded by the "#" symbol (because
 these are the actual, not the dummy parameters). The Macro Name
 should match the name appearing in the label field of the MACRO
 statement. At assembly time the Macro will be expanded and the
 source code generated will be printed on consecutive lines following
 the Macro Call statement (unless NOGEN is selected--see List Options
 and LIST pseudo-op). Each of these lines will have a plus, "+",
 sign immediately following the line number of the print-listing to
 distinguish these lines as belonging to a Macro Expansion. Note that
 Macro Call statements may appear anywhere throughout a source program
 including within another Macro Definition (beware of nesting to more
 than eight levels deep, however).

 An important point about Macro Calls and Definitions is that a Macro
 must be defined in a source program BEFORE it is called. This is to
 prevent a phase error from occurring. The general practice is to give
 all Macro Definitions near the beginning of the source code, followed
 by the body of the program itself. One of the most interesting
 features of the CROMEMCO Relocatable Assembler is that Z-80

 Page 46

 instructions can be redefined (in terms of other Z-80 instructions)
 using Macros. Of course, such an instruction which is redefined
 can not be used in its traditional sense again within the same
 source program; however, there are specialized cases in which it
 is desirable to slightly modify the function of an instruction.
 Note that the instruction itself cannot be modified; it is merely
 redefined in terms of other Z-80 instructions.

 The way ASMB interprets instructions is an important part of
 understanding the Macro capability. The Assembler forms a Macro
 Definition Table (MDT) of the Macros residing in the source program.
 This is the first place searched to satisfy an opcode. The second
 place searched is a table of addresses specifying the Macros which
 are accessed by the source program and which reside on disk (this
 table is formed ONLY if the Macro= option is specified when calling
 ASMB). If an opcode is found in this address tables the required
 Macro Definition is read into memory from the disk and added to
 the MDT. Finally, any still unsatisfied opcodes are found in the
 Z-80 Opcode Definition Table (ODT). Thus, it is possible to write
 an entire source program consisting only of Macros. In expanding
 these Macros, ASMB then uses the ODT to evaluate the Z-80
 instructions. This feature means that ASMB may be used as a
 language compiler by having a library of Macros which translate
 the commands of the language into a series of Z-80 instructions.
 To avoid wasting memory and repeating Macros unnecessarily when
 using such a scheme, Conditional Assembly may be used in conjunction
 with Macros to automatically generate subroutine calls. This feature,
 along with the other features of Conditional (IF) Assembly, are
 described in the following section. At the end of this chapter is
 a section of examples illustrating some of the features described
 in these first two parts of the chapter.

 Page 47

 ++++++++++++++++++++++++++++++++++++
 Conditional Assembly (IF statements)
 ++++++++++++++++++++++++++++++++++++

 An often close associate of the Macro is the Conditional Assembly or IF
 statement. The IF statement allows the user to write a source program
 in which certain blocks of code are assembled or not depending on the
 satisfaction of particular conditions. This is especially useful in
 conjunction with the MACRO or *INCLUDE statements. When using the IF
 statement with *INCLUDE, particular files may be included or not depen-
 ding on values in the source program. Note that such a file may be a
 series of Macros which are needed in the source program only under
 certain conditions. The IF statement is useful with MACRO definitions
 as a means of determining the desired number of levels of nesting of a
 Macro within itself (this is illustrated in an example in the following
 section). The feature may also be used to cause a Macro to set up a
 subroutine the first time the Macro is called, and to generate a
 subroutine CALL upon subsequent Macro calls. The format of the IF
 statement is as follows:

 (no label) IF <Item>
 <opcodes and
 operands which
 form the hody
 of code to be
 assembled
 conditionally>
 (no label) ENDIF (no operand)

 The item following the IF may be any legal label names expression,
 or constant as described in Chapter 3. It will be evaluated by the
 Assembler to determine whether it is True or False; a False expression
 is one that evaluates to 0, and a True expression is one that evaluates
 to -1 (0FFFFH). However, ANY non-zero value is considered to be True.
 NOTE that the IF statement evaluates the expression as a sixteen-bit
 quantity. If the expression exceeds this limit (for example: '0000'
 is a 32-bit (4-byte) ASCII expression the correct expression is:
 0000 or simply 0), it will generate an error message. A constant
 which exceeds the range will, however, be evaluated MOD 65,536 and
 will generate no error. Note that the Expression in the IF statement
 may use the operators described in Chapter 3. All the terms of the
 expression MUST have been previously defined to avoid errors; also,
 the expression must evaluate to an absolute quantity. An example of
 an IF statement with an expression is:

 IF COUNT EQ 0

 This will generate a value of True (or -1) if COUNT is equal to 0.
 The example could have been written a different way:

 COUNT: DL 1
 :
 :
 IF COUNT

 which will generate a value of True because in this case COUNT has the

 Page 48

 value of 1 which also stands for True (non-zero). Note the difference
 between these two examples; in the first case COUNT must equal 0 for
 the expression to be True, and in the second case COUNT must equal
 anything but zero for the expression to be True.

 After evaluating the expression the Assembler will then assemble
 the code following the IF statement if and only if the expression
 evaluated to be True. If the expression was False, the block of code
 bounded by the IF and ENDIF statements will simply be ignored by ASMB.
 It is also possible to suppress the print-listing of such ignored code
 by using either the NOCOND List Option or the LIST NOCOND pseudo-op
 (see the appropriate sections for more information). An ENDIF
 statement is required for every IF statement in a source program
 to tell the Assembler when Conditional Assembly is finished.

 IF statements may be nested up to eight levels deep; more than this will
 generate an error message. IF statements may also be nested in Macros;

 this makes it possible for a Macro to call itself a number of times
 specified by the IF statement (an example of this may be found in the
 following section). Macro parameters may be used in the expression of
 the IF statement. The following example to do three rotates illustrates
 this:

 ROTAT3: MACRO #DIREC
 IF '#DIREC' EQ 'R'
 RRCA
 RRCA
 RRCA
 ENDIF
 IF '#DIREC' EQ 'L'
 RLCA
 RLCA
 RLCA
 ENDIF
 MEND

 Note that the actual ASCII value of the parameter may be specified by
 enclosing it in single quotes as with any ASCII string. The two IF
 statements check to see if the parameter specified when calling ROTAT3
 is "R" or "L"; if it is neither, then no source code is assembled. If
 one or the other, then the corresponding left or right rotates will be
 generated.

 Page 49

 ++
 Examples of Macro and Conditional Assembly
 ++

 Many of the features of MACRO and IF statements described above are
 made clearest by illustrating them by means of examples. This section
 is included to give the user some idea of the many ways which Macro
 and Conditional Assembly may be used.

 ============================
 Example 1: Block Move Macro
 ============================

 The Macro Definition which follows provides a fairly simple example
 of the use of a Macro. This Macro defines a method for easily
 generating a block-move of a portion of a program:

 MOVE: MACRO #SOURCE,#SRCEND,#DESTIN
 LD HL,#SOURCE
 LD DE,#DESTIN
 LD BC,#SRCEND-#SOURCE
 LDIR
 JP #DESTIN
 MEND

 Note that three parameters are expected: a starting and ending location
 for the source, and a destination; this is of the same format as the
 M (move) command of DEBUG. Thus, the Macro Call for this example
 might be part of a program such as:

 ORG 2000H
 LOAD: MOVE START,STOP,100H
 START: LD ...
 :
 :
 STOP: END LOAD

 In this example the program would begin execution with LOAD, and would
 move the block of code between START and STOP to absolute address 100H.

 ==
 Example 2: A Macro that Converts Itself into a Subroutine
 ==

 In some cases the in-line coding which results from many Macro Calls
 is undesirable due to memory requirements. In such a case a Macro
 can be created which converts itself to a subroutine. Such a Macro
 has both the advantages of a Macro and a subroutine. Following is
 the Definition for SUBMAC, a Macro which calls itself:

 Page 50

 TRUE: EQU -1
 FALSE: EQU 0
 FIRST: DL TRUE
 SUBMAC: MACRO
 IF NOT FIRST
 CALL SUBROT
 ENDIF
 IF FIRST
 FIRST: DL FALSE
 JP DONE ; causes program to jump around
 SUBROT: ... ; subroutine upon first call
 :
 :
 RET
 DONE: NOP ; program jumps here
 ENDIF
 MEND

 The first three lines above are not part of the Macro Definition,
 but the value of FIRST must be initialized before it is used in the
 Definition. The JP DONE instruction in the above is used to cause
 a jump around the subroutine when it is assembled in-line with the
 source upon the first Call to SUBMAC. A sample program which might
 use this Macro is:

 START: ...
 :
 SUBMAC
 :
 SUBMAC
 :
 END START

 The first Call to SUBMAC above would generate the subroutine itself

 in-line. After the first call the value of FIRST has been redefined
 to be FALSE; hence, the second Call to SUBMAC would generate simply
 the line: CALL SUBROT.

 ==
 Example 3: Nested Macro Definitions to Generate Rotate Instructions
 ==

 A number of interesting and useful functions can be implemented by
 using nested Macro Definitions or Calls. The following is one such
 example, making use of one level of nested Macro Definitions to
 define a number of different Macros:

 ROTATE: MACRO #SHFT
 M#SHFT: MACRO #NUM,#REG
 VALUE: DL #NUM-1
 #SHFT #REG
 IF VALUE NE 0
 M#SHFT VALUE,#REG
 ENDIF
 MEND
 MEND

 Page 51

 The Macro ROTATE may be used to define a number of shift and rotate
 Macros; however, the inner Macros are not defined until ROTATE has
 been called one time. Thus, at the beginning of the program in which
 we wish to use the Macros, it is necessary.to initialize them by
 the Calls:

 SETUP: ROTATE SRA
 ROTATE RRC
 ROTATE RR
 ROTATE SRL
 ROTATE RLC
 ROTATE RL
 ROTATE SLA

 Note that this will define 7 additional Macros with the names MSRA
 through MSLA. The M (or any other legal character) is necessary
 in order to avoid having the Macro names match Z-80 opcodes. (Note
 that these same Z-80 opcodes are used within the Macro Definitions.)
 We can now call any of these Macros, giving a number and a register
 as parameters:

 START: LD ...
 MSRA 4,A
 MRLC 8,B
 MRR 3,E
 END START

 The number in each of the above cases is the number of shifts or
 rotates which will be generated. Thus, the Macro Call "MSRA 4,A"
 will, when expanded, generate 4 "SRA A" instructions in the source
 code. Since the ROTATE Macro could be contained in a Macro Library,

 the user's source program could contain a Macro Call of this type.

 Page 52

 CHAPTER 6: ASSEMBLER ERROR MESSAGES

 The Assembler generates a number of error messages while assembling
 to inform you of its progress. These messages fall into two general
 classes: those that involve the actual call to ASMB, are generated
 shortly thereafter, and are sent to the console; and those that are
 generated while the source code is being assembled and which inform
 the user of incorrect structures in the code. These two classes are
 described below. The user should note that in most cases the Assembler,
 when encountering an error, will assemble the line such that the correct
 number of bytes are reserved. Thus, the addresses are still numbered
 correctly, and the program may be loaded into memory and the incorrect
 bytes changed using DEBUG. This saves reassembling a very long program,
 when the user plans to debug it anyway. Of course, in the final
 version of source code, the error should be corrected.

 +++
 Error Messages Generated Following a Call to ASMB
 +++

 The following list contains the error messages set off in two lines
 of dashes, followed by a brief description of their meanings. Note
 that the errors are printed exactly as they would be sent to the
 console, upper or lower case. All the errors described in this
 section will ABORT the assembly and return control to CDOS. The user
 should be aware that any temporary files created by ASMB will remain
 on the disk following an abort; these may be erased if desired, but
 this is not required if the error is fixed and the file reassembled.

 source file not found

 This is generated when ASMB cannot find the specified source file on
 the disk. Check your spelling of the filename and the disk directory
 for the file.

 no directory space

 This is generated when ASMB attempts to open an output file (.REL or
 .PRN, for example) and finds that there are already 64 entries (the
 maximum allowed by CDOS) on the disk. This is NOT the same as running
 out of disk space (see following error message). There may be 64
 directory entries which are all short files, and thus not all the
 available kilobytes may be used (81 Kbytes for small and 241 Kbytes
 for large disks).

 Page 53

 write error, file - <filename.ext>

 ASMB will open any files which it requires (.REL or .PRN files, or the
 temporary files it opens to manage the XREF and OPCODE listings),
 shortly after being called. This message is generated if the disk is
 full (81 Kbytes for small, 241 Kbytes for large) when these files are
 opened, or if a file being written to causes the disk to become full
 during assembly.

 Note: The temporary files for XREF and OPCODE listings are created
 only if one or both of these options are specified. The XREF file
 is named <filename>.$$$ and the OPCODE file is named <filename>.$$0,
 where <filename> is the one specified in calling ASMB. These files
 are created during Pass 1 of the Assembler; they are removed from the
 disk following completion of the assembly.

 selected disk error

 This message is generated if the 3-letter drive-request instruction
 given after the filename is incorrect, ie, if it specifies a drive
 which does not exist or is not one of the characters, "X" or "Z".
 An example which will generate this message is: ASMB TESTFILE.ABE.
 "E" is not a correct drive letter.

 invalid option

 This message is generated if an invalid or misspelled Option is speci-
 fied following the <filename> in a call to ASMB. This will also appear
 if an invalid delimiter (such as ",") is used between Options. One
 or more <space(s)> is the only valid delimiter to separate Options.

 MACRO library not found

 This is generated only if the Macro=<d:filename.ext> option has been
 issued and the filename cannot be found by the Assembler on the speci-
 fied drive.

 out of memory

 The Assembler program (ASMB.COM) is loaded into memory at 100H and
 begins execution there. Above itself in memory ASMB forms the symbol
 table, which grows upward. Above the symbol table but below CDOS
 ASMB forms the Macro Definition Table (MDT), which grows downward
 through memory. If a user-program being assembled contains a great
 number of Macros and/or symbols, the symbol table and the MDT may
 grow together, thus generating the "out of memory" error. The message
 will be printed on the console and assembly will be aborted at this
 point. The simplest solution to the problem if it occurs is to edit
 the source code into two or more separate modules, assemble them
 separately, and link them at run time.

 Page 54

 ++
 Error Messages Generated During Assembly
 ++

 The following list contains the error messages generated during assem-
 bly of source code. They inform the user of a wide range of incorrect
 specifications such as misspelled opcodes or invalid relative jumps.
 When an error occurs, ASMB prints the error message which applies on
 the line immediately following the error. The message is a complete
 expression, not a symbol, and it occupies the entire line in a print-
 listing. It is set off by being preceded and succeeded by a string of
 asterisks. If the print-listing is sent to the disk or is not generated
 at all, any errors occurring during assembly will still be printed on
 the console; in this case the entire line of code as generated in the
 listing along with the error-type will be printed. Following assembly
 the total number of errors will be printed. Also, at the end of the
 listing will be printed a summary of all the line numbers where errors
 have occurred during assembly. This summary is printed (either to the
 disk or to the console) in the form of a table; the Width= option will
 limit the length of lines of characters in this table, but will not end
 any line in the middle of an entry just as was the case with the cross
 reference tables. Note that for each type of error message up to 100
 entries will be printed in this table. The error summary table is a
 very useful feature for going back and editing the file for corrections.
 Below in alphabetical order are the error messages which may appear
 along with a brief explanation of each one.

 argument error

 This arises when an invalid constant is used. This might happen when
 a number is incorrect for its base, or when an ASCII character string
 is too long for an expression. For example, the lines

 LD A,108Q (8 not valid octal character)
 LD HL,'ABC' (too many ASCII chracters)

 will both generate argument errors.

 divide by zero error

 This arises when an evaluated expression involves an attempt to divide
 by zero. An example is

 END: EQU 0FFF8H
 :
 :
 LD HL,255/(END+8)

 Since the value of END+8 is 0, this would produce the divide by zero
 error.

 Page 55

 expression error

 This applies to operand expressions which involve certain illegal
 operations with labels belonging to REL, DATA, or COM code segments.
 Expressions involving relocatable labels are limited to the following
 operations:

 RELNAM+ABSNAM (relocatable)
 RELNAM-ABSNAM (relocatable)
 RELNAM-RELNAM (absolute)

 where RELNAM stands for a label belonging to a relocatable code segment
 and ABSNAM stands for a label belonging to an ABS code segment (see REL
 and ABS in the chapter an pseudo-ops). The type of expression of
 the result of the given operation is given to the right in parentheses.
 Also note that in the last case above both RELNAMs must belong to the
 same type of Code Segment or an error will also be generated. (For
 example a label belonging to a COMmon area may not be subtracted from
 a label belonging to a REL area.) An expression error is generated
 if any arithmetic is attempted (ie, an expression is formed) using
 EXTernal names, as the values of these are unknown to the Assembler.
 This does not mean that EXTernals may not be used as operands, of
 course. Relative jumps from one type of Code Segment to another will
 also generate expression errors; for example it is illegal to jump
 from a REL to a DATA area using a relative jump. The reader should
 refer to the section of Chapter 3 on operators for more information
 on the use of expressions.

 file not found

 This message is printed following an INCLUDE for which the file to be
 included cannot be found on the disk. This error does not terminate
 assembly, but further errors may be generated if the source code looks
 for labels belonging to the missing file. Note the difference between
 this message, which is printed in the listing, and the "source file
 not found" and "MACRO library not found" messages which abort assembly
 and are printed on the console.

 label error

 This arises when a label contains or begins with an illegal character.
 The characters 0-9 are legal within a label but are illegal as the
 FIRST character. Allowable characters for labels are A-Z, a-z, ".",
 and "$". All register names are also illegal as labels; these are
 listed in Chapter 3 under the section on labels.

 label not allowed

 The following list of pseudo-ops do not ALLOW labels to precede them
 because of their nature. This message is printed if a label is used
 before one of the following pseudo-ops:

 Page 56

 ABS FORM or EXT or MEND
 COM EJECT EXTRN NAME
 DATA ENDIF IF REM
 REL ENTRY LIST TITLE

 Note that this is NOT the error message which is printed in the case
 of an illegal character in a label (see "label error"). Although the
 "label not allowed" message is printed and counted as an error, the
 source code will still be assembled correctly and the incorrect label
 will be ignored by ASMB.

 missing label

 This message is printed when the following pseudo-ops are NOT preceded
 by a label: EQU and DEFL or DL. This is opposite to the above case
 (see "label not allowed"); note that these two pseudo-ops REQUIRE a
 label to be assembled correctly. A MACRO definition section of code
 also requires a label in order to be used by the Assembler. For more
 information an Macros see the chapter devoted to them.

 multiple definition

 This message occurs any time a data or program label is defined more
 than once. This is prone to happen when using INCLUDES, as the included
 file may contain a label also used in the source file. Simply re-edit
 one of the files and change the label(s) involved.

 multiple MACRO definition

 This error is exactly similar to the "multiple definition" above, but
 is caused by a multiply-defined Macro name.

 nesting error

 This message appears whenever INCLUDEs, MACROs, or IFs are nested
 beyond the levels allowed by the Assembler. These are: 8 levels of
 nesting for MACROs and IFs, and 4 levels of nesting for INCLUDEs.
 Note that this means 8 levels of nesting for Macro CALLS; Macro
 DEFINITIONS may be nested indefinitely. However, be sure, when
 nesting Macro definitions, to insert the correct number of MEND
 (Macro END) pseudo-ops; the Assembler might otherwise consider a
 portion of the Source code to be part of a Macro. Examples of both
 nested Macro calls and definitions appear in the chapter on Macros.

 no matching IF

 This message appears following an ENDIF pseudo-op which has no corres-
 ponding IF statement in the source code preceding it.

 Page 57

 no matching MACRO

 This message appears following a MEND pseudo-op which has no corres-
 ponding MACRO definition statement in the source code preceding it.

 opcode error

 This follows an opcode which is illegal; this may be because it is
 misspelled or because the user intended for it to be a Macro and
 forgot to include this Macro definition.

 phase error

 This error message follows a line containing a name which was defined
 differently between Pass 1 and Pass 2 of ASMB. The most common cause
 of this is that a label has been used as a value (such as in an EQUate
 statement) before it has been defined. An example is

 LABEL1: EQU LABEL2
 :
 :
 LABEL2: LD A,5

 LABEL2 has been used in the EQU statement before it was defined. The
 error is corrected by moving the offending statement (in thit case the
 EQU statement) to follow the label definition. Other causes of phase
 errors are (1) using a term in an expression in a DS or IF statement
 which has not been defined yet, and (2) calling-a Macro before it has
 been defined.

 range error

 This message follows a relative jump which exceeds the range allowed
 for such jumps. This range is -126 bytes to +129 bytes measured from
 the address at which the relative jump is located; the actual values
 generated by the Assembler are in the range -128 to 127 because the
 Z-80 measures relative jumps from the instruction following the jump.

 The Assembler requires an ADDRESS, usually specified by means of a
 label, to be used as the operand of a relative jump instruction. ASMB
 then calculates the relative displacement of the jump and places this
 value in the object code. Remember that if a number is used, it will
 be considered to be an absolute address, NOT a displacement. Note that
 this may be different from the description of relative jumps in the
 Z-80 manuals by Mostek and Zilog. Some examples will illustrate these
 concepts; the statement

 JR NZ,100

 tells ASMB to generate a relative jump to LOCATION 100 or 64H, NOT

 Page 58

 to jump relative to the present location by 100 bytes. To avoid this
 confusion a better form would be

 JR NZ,LABEL
 :
 :
 LABEL: LD A,3

 for which ASMB will calculate the correct jump no matter where LABEL
 happens to be located. (However, if the label belongs to another type
 of Code Segment, an expression error will be generated; for example
 it is illegal to jump from a REL area to a DATA area using a relative
 jump.)

 syntax error

 This error message covers a wide range of ills; it generally appears
 when a quantity in one of the four Assembler Fields (see Chapter 3)
 has been misused. For example, writing a remark without preceding
 it with a ";" on a line which already contains a label, opcode, and
 operand will produce a syntax error. If you don't know the cause of
 the message, look up the expression or opcode of which you are unsure.

 too many COMmons

 This message follows the use of more than the allowable number of
 COMmons. ASMB allows a total of 15 COMmons including one "blank"
 COMmon. The term blank COMmon means that one of the COMmons need
 not be named, not that there is nothing in it. See the COM pseudo-op
 for more information on their use.

 undefined symbol

 This message follows a line containing a label name in the operand
 field which has not been defined. This is one of the most common of
 assembly language mistakes: using a label name for a data quantity and
 then forgetting to define it. Labels are defined by appearing in the
 label field of any opcode or pseudo-op which allows labels.

 value error

 This message follows a line in which a value is used which exceeds the
 range allowable for the opcode used. This value may be a constant or
 an expression. Opcodes which expect one-byte quantities will generate
 a value error for any expression whose value exceeds the range 0 to
 FFH (or its equivalent representation in decimal, octal, or binary).
 Opcodes which expect two-byte quantities will not generate an error if
 the value simply exceeds the numeric range (65,535); the value will
 simply "wrap around". That is, a value of modulus 65,536 is returned

 Page 59

 without an error flag. Some examples will illustrate these ideas.
 The following will generate a value error:

 LD A,3000H (a two-byte quantity used as one byte)

 However, the line

 LD HL,70000

 will not generate a value error; instead, the value 4464 or 1170H (which
 is 70000-65536) will be generated.

 Value errors will also be generated by the BIT, SET, and RES opcodes
 if the value of the expression used as an operand is outside the
 range 0 through 7.

 Page 60

 CHAPTER 7: ASSEMBLER PRINT-LISTINGS

 Following is the print-listing which results from the assembly of
 the example in Chapter 1 ("Getting Started"). There is much valuable
 information in this listing; it is therefore given here in a separate
 chapter so that the various terms and symbols can be explained. The
 command line which was typed to produce this assembly is slightly
 different from the command line typed in Chapter 2. This is because
 several Assembler Options have been specified here so the user can
 see what type of listing they produce. The command line which was
 typed to produce the following assembly is:

 ASMB TIMER SYMB XREF OPCODE RANGE

 The SYMB option requests a Symbol Table, XREF and OPCODE request Symbol
 and Opcode Cross Reference Tables, and Range requests those absolute
 jumps which are within range to be relative jumps. The next four pages
 contain the listing that results from this assembly. Following that
 is an explanation of the terms and conventions used in the listing.

 Page 61

 CROMEMCO CDOS Z8O ASSEMBLER version 02.02 PAGE 0001

 0001 ; This program rings the console bell at approximately
 0002 ; half-second intervals determined by a timer loop.
 0003 ;
 (0007) 0004 BELL: EQU 7 ; console bell is ASCII 07
 (0002) 0005 WRITE: EQU 2 ; write character to console
 (0005) 0006 CDOS: EOU 5 ; use system call to write

 (02FF) 0007 TIMIT: EQU 2FFH ; 2 is no. of half-seconds;
 0008 ; FF (256) is no. of loops
 (00FF) 0009 DURAT: EQU 0FFH ; FF (256) is loop duration
 0010 ;
 0011 ; Main Program
 0012 ;
 0000' 315A00' 0013 START: LD SP,STACK ; initialize stack pointer
 0003' 01FF02 0014 LOOP: LD BC,TIMIT ; B is no. of half-sec.;
 0015 ; C is no. of loops
 0006' 3EFF 0016 TIM2: LD A,DURAT ; get duration (256)
 0008' 3D 0017 TIM1: DEC A ; decrement and
 0009' 20FD 0018 JR NZ,TIM1 ; loop til zero
 OOOB' 0D 0019 DEC C ; decrement loop counter
 OOOC' 20F8 0020 JR NZ,TIM2 ; until zero
 OOOE' 10F6 0021 DJNZ TIM2 ; countdown half-seconds
 0010' 1E07 0022 LD E,BELL ; set-up to ring bell
 0012' 0E02 0023 LD C,WRITE ; set-up to write console
 0014' CDO500 0024 CALL CDOS ; call system
 0017, C30300' R 0025 JP LOOP ; loop and repeat
 0026 ;
 0027 ; Stack Area
 0028 ;
 001A' (0040) 0029 BOTTOM: DS 40H ; allow 64 bytes for stack
 (005A') 0030 STACK: EQU $; current location counter
 0031 ; equals top of stack
 005A' (0000') 0032 END START

 Errors 0
 Range Count 1
 Parity Count 0

 Program Length 005A (90)

 Page 62

 CROMEMCO CDOS Z80 ASSEMBLER version 02.02 PAGE 0002
 SYMBOL TABLE

 BELL 0007 BOTTOM 001A' CDOS 0005 DURAT 00FF LOOP 0003'
 STACK 005A' START 0000' TIM1 0008' TIM2 0006' TIMIT 02FF
 WRITE 0002

 Page 63

 CROMEMCO CDOS Z80 ASSEMBLER version 02.O2 PAGE 0003
 CROSS REFERENCE LISTING

 BELL 0004 0022
 BOTTOM 0029
 CDOS 0006 0024
 DURAT 0009 0016

 LOOP 0014 0025
 STACK 0030 0013
 START 0013 0032
 TIM1 0017 0018
 TIM2 0016 0020 0021
 TIMIT 0007 0014
 WRIIE 0005 0023

 Page 64

 CROMEMCO CDOS Z80 ASSEMBLER version 02.02 PAGE 0004
 OPCODE CROSS REFERENCE LISTING

 CALL 0024
 DEC 0017 0019
 DJNZ 0021
 DS 0029
 END 0032
 EQU 0004 0005 0006 0007 0009 0030
 JP 0025
 JR 0018 0020
 LD 0013 0014 0016 0022 0023

 Page 65

 ++++++++++++++
 Listing Columns
 +++++++++++++++

 This listing is divided up into a number of columns or fields. These
 are described below.

 Column 1 - This is a 16-bit address printed in hex. If an absolute
 ORG statement has not been given, the addresses will start with 0.
 Since the (nodules are relocatable, however, the Subsequent addresses
 are only relative to the final program base when the program has been
 loaded. Immediately following the address is either a space or one
 of the symbols: ', ", or *. These are described below.

 Column 2 - If the statement is a pseudo-op which generates a value
 (for example, the EQU statement), that value will be printed here in
 parentheses. For all Z-80 opcodes this column will contain up to four
 bytes of object code in hex. The DU and DW pseudo-ops will also
 produce object code in this column. If the code being assembled is
 relocatable, all addresses will correspond to relocatable addresses
 in column one, NOT the actual addresses these bytes will have when
 the program is linked and loaded into memory. Relocatable addresses
 will be followed by one of the symbols: ', ", *, or #, described
 below.

 Column 3 - This column is usually not printed. If the Range Option
 has been specified, all absolute jumps which are within range to be
 relative jumps are marked with an "R" character in this column.

 Column 4 - This column contains the line numbers of the source code
 in decimal beginning with 0001. All lines will be numbered including
 those coitaining only remarks.

 Column 5 - This is the label field of the original source. See
 Chapter 3 of this Part for a complete description.

 Column 6 - This is the opcode field of the original source. See
 Chapter 3 for a complete description.

 Column 7 - This is the operand field of the original source. See
 Chapter 3 for a complete description.

 Column 8 - This is the remark field of the original source. See
 Chapter 3 for a complete description.

 ++++++++++++++++
 Lines of Listing
 ++++++++++++++++

 The listing also contains useful information on the lines printed out
 at its beginning and end. These are described below.

 Beginning, Line 1 - This line contains the heading of the listing
 giving the current version and release numbers of ASMB. Also on this
 line is the page number; listings are numbered consecutively in decimal
 including the symbol and other tables at the end.

 Page 66

 Beginning, Line 2 - This line will contain the title of the module
 being assembled if the user specified one using the TITLE pseudo-op.
 A blank line is inserted if no title is used. The Assembler also
 inserts a blank line just before the listing begins on every page.

 Interspersed Lines - Error messages occupy one full line of a listing
 and are printed immediately following the line in which the error was
 first detected.

 End of Listing, Line 1 - The total number of errors which occurred
 during Assembly is printed on this line.

 End of Listing, Line 2 - This line will be printed only if the Range
 Option has been specified, and it gives the total number of jumps
 marked by Range.

 End of Listing, Line 3 - This line will be printed only if the Parity
 Option has been specified, and it gives the total number of 8080-Z80
 conflicts found (see Parity Option in Chapter 2).

 End of Listing, Line 4 - This gives total program length (ie, the
 byte-count of the object code) in both hex and in decimal.

 End of Listing, Line 5 - This and the following lines list all those
 COMmons which have been defined in the module along with their lengths

 in both hex and in decimal. Up to 15 COMmons may be listed.

 +++++++++++++++
 Listing Symbols
 +++++++++++++++

 There are four symbols which appear throughout a print-listing which
 give some additional information. These are described below.

 Single Quote (') - This symbol follows all addresses (column 1) which
 belong to a REL area. The symbol also follows all references to REL
 addresses made in the object code. For example the three bytes:

 C31F00'

 in the object code mean to jump to address 001F of the REL segment of
 code.

 Double Quote (") - This symbol follows all addresses (column 1) which
 belong to a DATA area. The symbol also follows all references to DATA
 addresses made in the object code. Remember that DATA program segments
 are very similar to REL program segments.

 Asterisk (*) - This symbol follows all addresses (in column 1) which
 belong to a COMmon program segment. The symbol also follows all
 references to COMmon addresses made in the object code.

 Page 67

 Pound Sign (#) - This symbol appears only following an address in the
 object code, and marks those lines as ones referencing EXTernals. The
 address just preceding the pound sign is the location that that EXT
 was last referenced, or is 0000 if it's the first time in the module
 that the EXT is referenced.

 Note that addresses in column 1 or in the object which are not followed
 by one of the four symbols above belong to an ABSolute segment of code.

 ++++++++++++++++++++++++++++
 Tables Following the Listing
 ++++++++++++++++++++++++++++

 There are several tables which may follow the print-listing of the
 source code. These are described briefly below.

 Symbol Table

 The symbol table contains an alphabetical list of all the symbols
 (labels) defined in the source program. Each symbol will be followed
 by its value and one of the four symbols described above to tell the
 user to which program segment it belongs. The value will be either
 the address at which the symbol is defined or the value of the
 expression to which it equates. Note that EXTernals listed in the
 symbol table do not follow this rule. The address listed following

 an EXT name is the address of its first occurrence in the source.

 Cross Reference Table

 The cross reference table contains an alphabetical list of all symbols
 and the line numbers of both their places of definition and occurrence
 throughout the source program. The symbols are listed in the first
 column, the line numbers of their definition in the second column, and
 the line numbers of their occurrence are listed by rows to the right
 of the first two columns. Symbols which have been multiply-defined
 by the use of DL statements will have the line numbers of subsequent
 definitions listed to the right and followed by the pound sign (#).

 Opcode Cross Reference Table

 The opcode cross reference table contains an alphabetical list of all
 opcodes and Macro names along with the line numbers of their places
 of occurrence (and places of definition for for Macros). The opcodes or
 Macro names are listed in the first column, the line numbers of Macro
 definitions ONLY are listed in the second column, and the line numbers
 of their places of occurrence are listed by rows to the right.

 This completes the description of the items which make up an assembled
 print-listing. This also completes Part I of this book.

 Page 68

 PART II - CROMEMCO LINKER/LOADER MANUAL

 Page 69

 **
 CHAPTER 1: USING THE CROMEMCO LINKER/LOADER
 **

 ++++++++++++++
 Command Format
 ++++++++++++++

 The CROMEMCO Linker/Loader is used to link assembled program modules
 together, load them into memory, and begin execution there if desired.
 The Linker is supplied to the user on diskette (large or small) under
 the directory entry "LINK.COM". The command line to call LINK consists
 of a number of filenames and switches according to the following format:

 LINK <d:filenam1.ext/s,d:filenam2.ext/s,...)

 where d stands for the disk drive letter (A through D), s stands for
 one of the legal switches of the Linker (see list in this chapter),
 and filename.ext stands for a user filename plus its 3-letter
 extension. The only quantity required above after the word LINK
 is filenam1. LINK defaults to the current drive if the disk drive
 letter is omitted, and it defaults to the extension .REL if the 3-
 letter extension is omitted. The switches are not necessarily
 required, and are used to give LINK instructions regarding the files.
 The Linker will accept commands in the order received, but does not
 require a single command line. The prompt for LINK is an asterisk,
 "*", any time the asterisk appears, a command may be entered. Thus,
 the names of files to be linked may be given one at a time rather
 than an one command line. The example of Chapter 4 will illustrate
 this further. After each line is typed, LINK will load or search
 the named file(s). When LINK finishes this process, it will list
 all symbols that remain undefined followed by an asterisk.

 The switches LINK accepts give the user a variety of ways to control
 the linking process. For example the user may cause the Linker to
 search special library files to satisfy undefined globals by linking
 the filename to be searched followed by /S. The /M switch can be used
 to map a list of all defined and undefined symbols. These switches
 are described in the next section. Chapter 2 gives a brief explanation
 of the operation and format of LINK and associated .REL files for
 those who are interested. It may be safely skipped, however, for it
 contains no information on the actual use of the Linker. Chapter 3
 is a brief summary of the error messages that occur and why, and
 Chapter 4 gives a step-by-step example of the process of linking and
 loading program modules.

 Page 70

 +++++++++++++
 LINK Switches
 +++++++++++++

 The Linker allows a number of switches which specify actions affecting
 the loading process. These switches are listed here.

 /E (Exit to CDOS)

 Exit to CDOS upon completion of link and load. Prior to exiting, LINK
 prints on the console the start and stop execution addresses along
 with tile number of 256-byte pages of memory the program occupies (in
 decimal), according to the following format:

 [xxxx yyyy zz]

 where xxxx is the address at which execution will start, yyyy is one
 more than the highest location used by the loaded object code, and zz
 is the decimal number of pages required.

 If it is desired after executing the /E to save the file now located
 in memory, this can be done using the SAVE command, which is one of
 the CDOS intrinsic commands (see also CDOS manual). The user would
 then type:

 SAVE filename.ext zz

 where zz is the same number printed out by LINK above (following the
 issue of /E). The filename can be any legal name; however, if the name
 used already resides on the disk, the saved file will be written over
 this existing file. The 3-letter extension is frequently .COM because
 this procedure is often used to create command files; however, any
 extension may be given. Note that other CDOS INTRINSIC commands may be
 given before the SAVE command; for example, DIR may be typed to see
 about available directory space. However, executing any EXTRINSIC
 commands (XFER, EDIT, etc.) will change the contents of the user-area.
 For a 32K system, zz=105 will save the entire user-area.

 /G (Go - start execution)

 Start execution of the program as soon as the current command line has
 been interpreted. Prior to execution, LINK prints on the console the
 start and stop addresses and the number of 256-byte pages occupied by
 the object code, according to the format shown above (see /E). Fol-
 lowing this is the message "[BEGIN EXECUTION]" at which point execution
 is started by LINK. The Linker initializes the stack pointer at the
 highest address of the user-area in case this operation is forgotten
 by the user program.

 Page 71

 /M (Map all symbols)

 List both all the defined globals and their values and all undefined
 glabals followed by an asterisk. The map may be sent to the printer
 by typing Control-P (^P) following the LINK command line. This printer
 map of symbols is very useful for debugging the user-program. Once
 the object code has been loaded into memory by LINK, /E can be issued
 and the correct portion of the user-area saved in a file. Then the

 program DEBUG can be called and used to load and debug the file just
 created. The global map printed previously can be used to reference
 addresses.

 /R (Reset linker)

 Put Loader back in its initial state. /R is used to restart LINK if
 the wrong file was loaded by mistake. /R will take effect as soon as
 it is encountered in a command string.

 /S (Search file)

 Search the disk file having the filename immediately preceding the /S
 in the command string, to satisfy any undefined globals. This is
 convenient for having the Linker search a library file of much-used
 routines. (Note that when using LINK with CROMEMCO FORTRAN, the
 library file FORLIB.REL is searched automatically to satisfy undefined
 globals.)

 /U (list all Undefined globals)

 List all undefined globals as soon as the current command line has been
 interpreted and executed. LINK defaults to this switch; therefore, it
 is generally not needed unless it is desired to reproduce this list
 more than once. For example say that during link the list of undefined
 globals is printed to the console. The user could then type Control-P
 followed by "/U" to cause the undefined globals to be listed a second
 time, this time to the printer as well as the console.

 Page 72

 **
 CHAPTER 2: FORMAT OF LINK-COMPATIBLE OBJECT FILES
 **

 The following is a description of the format of REL files which
 are to be compatible with the CROMEMCO Linker. This information
 is provided for the interested programmer, but is not in any way
 required reading for the person learning how to USE the Linker.

 LINK compatible object files consist of a bit stream. Individual
 fields within the bit stream are not aligned on byte boundaries
 except as noted below. The use of a bit stream for relocatable
 object files keeps the size of the files to a minimum, thereby
 decreasing the number of disk reads and writes. The first bit
 of a field is either a one or a zero, and this is followed either
 by an 8-bit byte or a 2-bit field having the following meanings:

 Bit Meaning
 0 (load the following eight-bit byte as absolute code)
 1 (read in the following two bit field:)

 11 Add sixteen bit offset to common base
 10 Add sixteen-bit offset to data base
 01 Add sixteen-bit offset to program base
 00 Special LINK item

 Special LINK item fields begin with the bit stream 100 as just
 explained. This is followed by a four-bit control field, an
 optional A-field which consists of a two-bit code specifying address
 type, and an optional B-field which consists of 3 bits giving a
 symbol length. The 2-bit address type has the same meanings as
 the 2-bit field above except 00 specifies absolute addressing.
 The 3-bit symbol length is followed by eight bits for each character
 of the symbol. We can represent this bit stream by the following:

 A-field B-field
 1 00 xxxx <yy two-byte-value> <zzz characters-of-symbol--name>

 where the spaces in the above show where the various fields end, the
 angular brackets denote optional quantities, and where

 xxxx is the four-bit control field
 yy is the two-bit address type field
 zzz is the three-bit symbol length field

 The two-byte-value following yy will be either the 16-bit offset
 specified or the absolute address, and the characters-of-symbol-name
 following zzz will be in ASCII, each character occupying eight bits.

 Page 73

 The four-bit control field will specify the operation or function
 of the bit stream. It can have the following values, where the
 four-bit value is given in the left-hand column in decimal:

 (The following LINK items have a B-field only:)

 0 Entry Symbol (name for search).
 1 Select COMmon Block.
 2 Program Name.
 3 Reserved for Future Expansion.
 4 Reserved for Future Expansion.

 (The following LINK items have both an A-field and a B-field:)

 5 Define COMmon Size.
 6 Chain External (A is head of address chain).
 B is name of external symbol.
 7 Define Entry Point.
 8 Reserved for Future Expansion.
 9 Reserved for Future Expansion.

 (The following LINK items have an A-field only:)

 10 Define Size of Program Data Area.
 11 Set Londing Location.
 12 Chain Address.

 A is head of chain; replace all entries in chain with
 current location counter. The last entry in the chain
 has an aldress field of absolute zero.
 13 Define Program Size.
 14 End Program (forces to byte boundary).

 (The following LINK item has neither an A- nor a B-field:)

 15 End of File.

 Page 74

 CHAPTER 3: LINK ERROR MESSAGES

 The Linker gives several error messages in case of an illegal
 operation. These are listed below in the summary along with an
 explanation of each one. Note that there are two types of error
 messages: fatal errors and warnings. Fatal error messages are
 preceded by question marks (?) and warning messages are preceded
 by percent signs (%). A program will run in some cases when a
 warning has been issued; however, it is better practice to correct
 the error and link again.

 Fatal Errors

 ?No Start Address A /G switch is issued, but no main
 program module has been loaded.
 Remember when creating and linking
 machine language programs that the
 main module must have an address
 or label in its END statement.
 This then becomes part of the .REL
 file which informs LINK where to
 begin execution (see also the END
 pseudd-op).
 ?Loading Error The last file given to be linked
 and loaded is not a properly for-
 matted LINK object file.
 ?Fatal Table Collision There is not enough memory to load
 the given program(s)
 ?Command Error An unrecognizable LINK command has
 been given. Type the correct
 command or re-link.
 ?File Not Found A file in the command string does
 not exist as spelled or specified.
 Check to see if the file resides
 on the specified drive. Often
 this message results if the user
 forgets to specify the drive letter,
 and LINK looks on the current drive.

 Page 75

 Warnings

 %2nd COMMON Larger /XXXXXX/ The first definition of COMmon
 block XXXXXX is not the largest.
 COMmons do not have to be the
 same size provided the module
 containing the larger COMmon
 specification is linked first so
 that LINK allocates an appropriate
 number of bytes for data storage.
 To prevent this error re-order the
 module loading sequence or change
 the COMmon block definitions.
 %Mult. Def. Global YYYYYY More than one definition for the
 global (internal) symbol YYYYYY
 is encountered during the loading
 process. This message may result
 if you redefine the LUN table of
 FORTRAN ($LUNTB) and then link
 with FORLIB.REL without specifying
 the /S switch. The Linker then
 loads both the redefined version
 of $LUNTB and the version contained
 in FORLIB.

 Page 76

 CHAPTER 4: EXAMPLES OF LINKING MODULES

 Following are several examples of the process of linking, loading,
 saving, and executing files. The asterisk (*) in the following
 command lines is NOT user-typed; it is the prompt for LINK.

 We would type the following command to load a 32-byte program called
 MYPROG into memory and begin execution:

 LINK MYPROG/G

 If the load is successful (no errors), the Linker will respond with
 the message:

 [1000 1020 16]
 [BEGIN EXECUTION]

 This program will begin execution at 1000H. If we desired to save the
 program prior to execution, could type instead:

 LINK MYPROG/E

 to which the Linker would respond with:

 [1000 1020 16]

 followed by a return to CDOS and the issue of the CDOS prompt. This
 return to CDOS does not change the user area; hence, we could then
 save the program by typing:

 SAVE MYPROG.COM 16

 Since we have named this a .COM file, we can execute it directly
 from CDOS by typing the nane "MYPROG".

 Another example would be to link several modules together as they
 are loaded into memory. Suppose we have the three relocatable
 modules GRAPHX, MAIN, and SUBPLOT. We first type:

 LINK <CR>

 to which LINK responds with the asterisk. We could then type:

 MAIN

 The Linker would look on the current drive for MAIN and then return

 Page 77

 the still-undefined symbols (each one followed by an asterisk) and
 the address at which they are referenced:

 INITG* 122E
 LINE* 164D
 CURSR* 163E
 STRIN* 131B
 SUBROT* 147D
 *

 We then link the next module:

 GRAPHX

 and LINK again responds with the undefined symbols and the prompt:

 SUBROT* 147D
 *

 Finally, we link the last module:

 SUBROT

 to which link responds with the prompt. We could now type /G or /E
 to run or exit from the program as we did in the first example.
 However, let's first generate a map of all the symbols using the /M

 LINK switch:

 */M

 to which the Linker would respond:

 INITG* 122E
 LINE* 164D
 CURSR* 163E
 STRIN* 131B
 SUBROT* 147D
 PAGE 17DF
 DOT 180E
 ANIMT 1558

 Note that this is similar to the map of undefined symbols; however,
 in this case symbols which are not used, but have been defined in
 one of the linked programs, are also listed.

 The above example could a1so have been linked directly, and without
 producing the maps of undefined symbols, by typing the command line:

 LINK GRAPHX,SUBPLOT,MAIN/M

 Note also that this command line links them in a different order than
 the first case since all of the modules are relocatable. Thus, the
 map printed to the console this time would have a different address
 after each symbol.

 Page 78

 The Linker can also be used to link machine language subroutines
 to programs written for and compiled with CROMEMCO FORTRAN IV. The
 assembly language subroutine should be assembled with ASMB, which
 forms a .REL file. The form of the link is then exactly the same as
 for the previous example. An important note is that LINK has been
 designed to automatically search FORLIB.REL, the FORTRAN Library file
 of subroutines. LINK looks for this file on drive A, rather than the
 current drive. The user can force the Linker to look for FORLIB on
 another drive by typing a command like:

 LINK FORTRAN,SUBROT,B:FORLIB/S

 where FORTRAN is the user's compiled FORTRAN program. Note the use
 of the /S switch following FORLIB. This tells LINK to load into
 memory only those routines which are actually needed rather than the
 entire Library. It is important to use this switch with library
 files in order to save memory space.

 Finally, note that the user may return to CDOS at any time while
 using LINK (to abort the linking or loading process, for example) by
 typing Control-C (^C).

 Page 79

 PART III - CROMEMCO PROGRAM DEBUGGER MANUAL

 Page 80

 CHAPTER 1: INTRODUCTION TO DEBUG

 The CROMENCO DEBUG program makes it possible to test and debug
 user programs. DEBUG is loaded into memory and moved to the highest
 memory available below CDOS. When using a 32K CDOS and DEBUG, there
 is 20K left for the user program.

 +++++++++++++
 LOADING DEBUG
 +++++++++++++

 DEBUG is loaded by typing one of the following commands from CDOS.

 DEBUG
 DEBUG filename.ext

 where "filename" is the name of the program to be tested, and "ext" is
 the file extension. In both cases, DEBUG is loaded into memory directly
 below CDOS. The CDOS jump instruction located at location 5H is changed
 to jump to the start of DEBUG. This allows locations 6H and 7H to still
 point to the lowest available memory location.
 The second command above is used to load the file to be tested into
 memory. If the extension ("ext") is ".HEX", then the file is read as an
 INTEL HEX file. Any other extension is read as an absolute binary file,
 loaded at location 100H. **** NOTE **** DEBUG does not load relocatable

 files. If an extension is ".REL" it will be loaded in as if it were
 binary and will not be executable.

 ++++++++++++++++++
 CONTROL CHARACTERS
 ++++++++++++++++++

 Control characters are used in DEBUG and TRACE to help in entering
 commands. These control characters are the same as CDOS uses.

 Control-C (^C) go back to CDOS
 Control-H (^H) delete character and backspace on CRT
 Control-U (^U) delete line
 Control-X (^X) delete character and echo
 underscore delete character and backspace on CRT
 RUBout (DEL) delete character and backspace on CRT

 Page 81

 During a printing (such as from the DM command) the following
 characters may be used.

 Control-S (^S) stop/start printing. If printing, this
 character will stop the printing. If already
 stopped, this character will resume the
 printing.

 break (or any other character) will abort the
 printing, prompt, and wait for the next
 command.

 ++++++++++++++
 COMMAND FORMAT
 ++++++++++++++

 DEBUG is controlled by one and two character commands from
 the terminal. The format is free-form in respect to spaces. Commas
 may be used in place of spaces. In the following, the examples all
 dump memory starting at location 1000H and ending at location 10FFH.

 DM1000 10FF (CR)
 DM1000S100 (CR)
 D M 1000 10FF (CR)
 D M 1000 S 100 (CR)
 DM1000,10FF (CR)
 DM1000,S100 (CR)
 D M 1000 , 10FF (CR)

 ++++++++++
 @ REGISTER
 ++++++++++

 DEBUG was designed to give flexibility in testing relocatable
 programs. The "@" register is used to tell DEBUG where the module

 you wish to debug is located. This address can be found from
 the map generated by the linking loader "LINK". To change
 the "@" register, type "@ (CR)" on the console. The computer will then
 type "@-xxxx ", where xxxx is the current value of the register. The
 computer will then wait for a new address. If a CR only is typed, the
 register remains unchanged. If an address and a CR is typed, then the
 register will contain the new address. The "@" register may now be
 used as part of an address. The following example demonstrates it's
 use.

 G/@ @A3 1000

 This is an example of the go command. Break points will be set at
 the beginning of the current module, relative location A#H in the
 current module, and at location 1000H. This feature allows you to test
 a module without having to calculate absolute addresses.

 Page 82

 +++++++++++++++++++
 ADDRESS EXPRESSIONS
 +++++++++++++++++++

 For additional ease in specifying addresses an expression can be
 used. Within these expressions, addition, subtraction, the "@" register,
 and the "$" may be used. The "$" is the current location of the program
 counter (P register). If many modules are being tested, addition can be
 used to specify relative addresses.

 G/2321+A3

 The preceeding example would set a break point at relative location
 A3H if the module is located at 2321H.

 ++++++++++++++
 SWATH OPERATER
 ++++++++++++++

 There are two ways to specify the address range of many commands.
 The first is to simply list the beginning and end addresses (and where
 appropriate, the destination address). For example, the first command
 below programs the range 0 through 13FFH into PROMs starting at location
 E400H. The second command displays the contents of memory between
 addresses E400H and E402H.

 PO 13FF E400
 DME400 E402

 Another way to do the same thing is to use the Swath operator, "S",
 to specify the width of the address range, rather than state the end
 address explicitly.

 PO S14OO E400
 DM E40OS3

 ++++++

 ERR0RS
 ++++++

 Any errors made during entering of a command may be corrected by
 typing Control-U (^U) to abort the line or by backspacing and correcting
 the line. If a CR has already been entered and DEBUG detects an
 error, the line will not be accepted and a "?" will be printed.
 Re-enter the line with the incorrect data corrected.

 Page 83

 CHAPTER 2: DEBUG COMMANDS

 DEBUG and TRACE commands are described in detail below. The
 operator must wait for the prompt character ("-") before entering the
 command.

 A - Assemble into memory

 This command allows in-line assembly language to be assembled into
 memory. The command takes the following format.

 A beginning-addr (CR)

 The user is prompted with the absolute address, followed by the
 relative address. DEBUG reads from the console the assembler mnemonics,
 and assembles the instruction into memory. The mnemonics for the various
 Z-80 instructions can be found in the Z-80 CPU TECIINICAL MANUAL published
 by Mostek and Zilog. If there was no error in the instruction it is
 stored in memory and the User is prompted for the next instruction. The
 The rules for address expressions apply to the addresses in the assembler
 mnemonics. In the following example the "@" register contains 1234H.

 A@40
 1274 0040' ADD B
 1275 0041' CALL @93
 1278 0044' JP 1032+95
 127B 0047' .

 The A command terminates when the first blank line or a line
 starting with a "." is entered from the console. If there is an error
 in the input line, it will not be accepted, a "?" will be printed and
 the console will be prompted with the addresses again.

 DM - DISPLAY MEMORY

 The contents of memory are displayed in hexadecimal form. Each
 line of the display is preceded by the address of the first byte and
 followed by the ASCII representation of the hexadecimal bytes. An
 example follows

 DM100,S30
 0100 40 41 42 43 44 45 46 47-48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
 0110 50 51 52 53 54 55 56 57-58 59 5A 30 31 32 33 34 PQRSTUVWXYZ01234
 0120 35 36 37 38 39 00 00 00-00 00 00 00 00 00 00 00 56789...........

 Page 84

 The formats of this command are as follows.

 DM (CR)
 DM beginning-addr (CR)
 DM beginning-addr ending-addr (CR)
 DM beginning-addr S swath-width (CR)
 DM,ending-addr (CR)
 DM S swath-width (CR)

 The first format disp1ays memory from the CURRENT display address,
 initially 100H, and continues for 8 lines. The second format displays
 from the beginning address and continues for 8 lines. The third format
 displays from the beginning address to the ending address. The forth
 format displays from the beginning address for a length specified by
 the swath-width. The fifth format displays from the CURRENT display
 address to the ending address. The sixth format displays from the
 CURRENT display address for a length specified by the swath-width.
 If an "X" is included after the "DM", the relative addresses are
 also printed. In the following example assume that the "@" register
 contains 100H.

 DMX100,S30
 0100 0000' 40 41 42 43 44 45 46 47-48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
 0110 0010' 50 51 52 53 54 55 56 57-58 59 5A 30 31 32 33 34 PQRSTUVWXYZ01234
 0120 0020' 35 36 37 38 39 00 00 00-00 00 00 00 00 00 00 00 56789...........

 DR - DISPLAY REGISTERS

 When DEBUG or is re-entered from a break point, the user registers
 are saved. The registers may be displayed at any time by typing the
 following command.

 -DR (CR)
 SZHVNCE A=00 BC=0000 DE=0000 HL=0000 S=0100 P=0100' LD E,A
 SZHVNC A'=00 B'=0000 D'=0000 H'=0000 X=0000 Y=0000 I=00

 The letters "SZHVNC" are the flags, on the second row are the prime
 flags. If the flag is on, it is printed, if the flag, is off, a space is
 printed. If only the carry and zero flag are set then " Z C" would be
 printed. The flags are described below.

 S - Sign flag, S=l if the MSB of the result is one, ie, the
 result is negative.
 Z - Zero flag, Z=l if the result of an operation is zero.
 H - Half-carry flag, H=1 if the add operation produced a carry
 into the 4th bit of the accumulator or a subtract operation
 produced a borrow from the 4th bit of the accumulator.

 V - Parity or overflow flag. This flag is affected by arithmetic
 and logical operations. If an overflow occurs during an
 arithmetic operation, the flag is set to one. After a
 logical operation, the flag is set 1 if the result of
 the operation has even parity.

 Page 85

 N - Add/subtract flag, N=1 if the last operation was a
 subtraction.
 C - Carry flag, C=1 if the operation produced a carry.

 The E flag on the first line is the state of the interrupt enable
 flip-flop (IFF). If interrupts are enabled, the "E" is printed,
 otherwise a space is printed.
 The A register is printed next, followed by the BC, DE, and HL
 register pairs and the stack pointer. The program counter value is then
 printed in both absolute and relative. The opcode pointed to by the
 program counter is then displayed as an instruction.
 On the second line, the prime registers are displayed, F' (prime
 flags), A', BC', DE', and HL'. The IX, IY, and I (interrupt page)
 registers are printed next. If the disassembled opcode includes an
 address, the relative value of this address is printed as the last thing
 on the line.

 -DR (CR)
 S H NCE A=00 BC=0000 DE=0000 HL=0000 S=0000 P=1234 0010' CALL 1334
 SZ NC A'=00 B'=0000 D'=0000 H'=0000 X=0000 Y=0000 I=00 (0110')

 E - EXAMINE INPUT PORT

 The data port is read and displayed as a hexadecimal number. The
 format of the command is

 E data-port (CR)

 In the following example the data part 3 is read and displayed on
 the console.

 -E3 (CR)
 23

 EJ - EJECT DISK

 The format of the command follows.

 EJ d

 The d is the disk number (A, B, C, D). If the designated disk is
 a CROMEMCO DUAL DISK SYSTEM model PFD, with the eject option, the
 diskette in the disk drive will eject.

 Page 86

 F - SPECIFY FILE NAME

 This command allows the operator to insert filenames in the two
 default FCBs (at 5CH and 6CH) and the command line into the default
 buffer (at 80H). The example below loads FILE1.COM into the first FCB
 and FILE2.COM into the second FCB. The complete line is also loaded
 into the default buffer.

 -FFILE1.COM FILE2.COM OPTION1 OPTION2

 This command can be used with the "R" command to read in disk files.

 G - GO

 The GO command has the following format.

 G(starting-addr)/(breakpoint-1) (breakpoint-2)...(breakpoint-5)

 Each of the addresses are optional. If the starting address is
 omitted, then the contents of the Program Counter is used. The registers
 are loaded from the user registers (these are the values displayed with
 the DR command). Execution begins with the starting address or the
 contents of the program counter. If break points were specified, a
 RST 30H is inserted at the break point addresses and a jump instruction
 is placed at location 30H. When a breakpoint is executed, control is
 returned to DEBUG, and all of the user registers are saved (the registers
 may then be displayed with the DR command). All breakpoints are then
 removed from the user program. The program counter is displayed after
 the breakpoint. Note the following about breakpoints:

 (a) Breakpoints can only be set in programs residing in RAM.
 This is because a RST 30H is inserted at each break point location.
 (The original contents of these locations are saved so that they can
 be restored after a break point is executed.)
 (b) Up to 5 break points can be set. If an attempt is made to
 enter more than 5 break points, the command will not be accepted.
 (c) When a break point is used, a jump instruction is stored at
 location 30H. Therefore locations 30H, 31H, and 32H are not available
 to a user program.

 The GO command has an additional feature that is very helpful in
 debugging a program. A count is allowed for each break-point. This
 count is entered after the break-point and enclosed in parentheses.
 This count is the number of times the program reaches this address
 before control is returned to DEBUG. A count of one says to break the
 next time the address is reached. In the example below execution begins
 at location 100H and will break when address 109H is reached for the
 second time or when 123H is reached for the first time.

 -G100/109(2) 123
 Fage 87

 Note that 123 and 123(1) means the same thing. Also note that the
 count is a hexidecinal number. Therefore 123(F) means to break after the
 address has been executed for the 15th time.

 H - HEXADECIMAL ARITHMETIC

 Hexadecimal addition and subtraction may be performed by this
 command. The first number to be printed is the sum of the two input
 numbers. The second number to be printed is the difference between the
 first number and the second number. In the example following, the first
 number is 1234 + 321, and the second number is 1234 - 321.

 -H1234,321
 1555 0F13

 L - LIST IN ASSEMBLER MNEMONICS

 The list command is used to list the contents of memory in
 assembly language mnemonics. The formats for this command are.

 L (CR)
 L starting-addr (CR)
 L starting-addr ending-addr (CR)
 L starting-addr S swath-width (CR)
 L,ending-addr (CR)
 L S swath-width (CR)

 The first format lists 16 lines of disassembled code starting from
 the current list address. The second forat lists 16 lines from the
 starting address. The third format lists from the starting address to
 the ending address. The fourth format lists from the starting address
 for a length specified by the swath width. The fifth format lists from
 the current list address to the ending address. The sixth format lists
 from the current address for a length specified by the swath address.
 The first address of the disassembly is the absolute address. The
 second address is the relative address. If the disassembled instruction
 contains an address, the absolute address is printed in the instruction
 in hexadecimal and the relative address is printed to the right of the
 disassembled line. In the example that follows, the "@" register
 contains 2800H.

 -L@800 812
 3000 0800' ADD B
 3001 0801' CALL 3200 (0A00')
 3004 0804' CALL 3243 (0A43')
 3007 0807' CALL 3333 (0B33')
 300A 080A' LD A,B
 300D 080B' OR C
 300C 080C' JR Z,3000 (0B00')
 300F 080F' INC HL
 3010 0810' INC DE
 3011 0811' INC BC

 3012 0812' LD A,H

 Page 88

 M - MOVE MEMORY

 The formats of this command follow.

 M source-addr source-end destination-addr
 M source-addr S swath-width destination-addr

 The first format moves the contents of memory beginning with the
 source address and ending with the source-end to the destination
 address. The second format uses the swath width to determine the length
 of the move.
 The move is verified to insure that all bytes were moved correctly.
 If an overlapping move was made, errors will be reported. The error
 reporting can be terminated by typing any character.
 The move command can be used to fill a block of memory with a
 constant. In the following example, a zero has been entered into
 location 100H using the SM command. The following command will move
 zeros from location 100H through 108H.

 -M100 S7 101

 Care should be taken not to move memory over DEBUG, TRACE or CDOS.

 0 - OUTPUT TO DATA PORT

 This command outputs data to a data port. The following is the
 command format.

 O data-byte port-number (CR)

 P - PROGRAM PROMS

 This command allows programming of PROMS. The following are the
 command formats.

 P source-addr source-end destination-addr
 P source-addr S swath-width destination-addr

 The first format programs PROMs starting with the source address
 and ending with the source-end into PROMs beginning at the destination
 address. The second format determines the length from the swath width.
 If the length of the source is not a multiple of 400H or if the
 destination does not begin at a 400H boundry DEBUG will reject the
 command. (Multiples of 400H end in '000', '400', '800', and 'C00'.)
 Any number of 2708 or 2704 PROMs can be programmed in the execution
 of one command as long as there are enough BYTESAVERS to contain them.
 Each PROM is verified with its source after all are programmed and any

 discrepancies are printed out. If no discrepancies are found, a prompt
 is printed and the next command may be entered.

 Page 89

 Software can be loaded into a PROM in as small increments as you
 desire, provided it is added to previously unused areas of the PROM.
 This is done by first using the Move command, "M", to transfer the
 contents of the PROM to RAM, adding the new software to an area of RAM
 which corresponds to the unused portion of the PROM and finally using
 the Program command, "P", to reprogram the PROM with the result.
 Although the entire PROM must always be programmed, it never hurts to
 rewrite the same data over again. In general, a 1 may be written over a
 1, a 0 over either a 1 or a 0, but the only way to change 0's to 1's is
 to erase the PROM with appropriate UV light. (See the BYTESAVER manual
 for details.)

 R - READ DISK FILE

 This command allows the operator to read a disk file. The "R"
 command is used with the "F" command. The "F" command is used to
 specify the filename, and the "R" command reads in the file. If the
 file has an extension of ".HEX", then the file is an INTEL HEX file and
 will be read into memory. Any other file is considered to be a binary
 file and will be read directly into memory beginning at location 100H.
 The format of the "R" commands is

 R
 R displacement

 The first format reads the file with no displacement. The second
 format reads the file with a displacement. If the input file is in HEX,
 then the displacement is added to the addresses in the file to
 determine the addresses at which to store the file. If the file is a
 binary file, it will be stored at the displacement + 100H.
 When the "R" command is executed, DEBUG prints either a "?" if
 there is an error (file not found, checksum error. or file attempting
 to read above highest available memory location) or with the following
 message if there is no error.

 NEXT = xxxx

 Where xxxx is the address of the next available memory location
 past the end of the file.

 SM - SUBSTITUTE MEMORY

 This command is used to substitute memory. The format of the
 command follows.

 SM starting-addr

 DEBUG prints the absolute address, followed by the relative
 address, followed by the contents of the memory byte. One of the
 following may then be entered.

 Page 90

 (a) data-byte value. The data byte value is stored at the
 address of the prompt. The address is then incremented
 by 1 and displayed on the next line.
 (b) string enclosed in quotes. The string is stored beginning
 at the address of the prompt. The address is then incremented
 past the string and displayed on the next line.
 (c) Any number of (a) and (b) above can be entered on one
 line. The address is then incremented past the bytes that
 were stored and the now address is displayed on the next
 line.
 (d) "-". A minus sign does not store a byte. The address
 will be decremented to the previous address. The minus
 sign can be used to "back up" to a previous location in
 case an error has been made.
 (e) (CR) only. If no entry is made on the line, the memory
 byte remains unchanged. The address is incremented by 1 and
 displayed on the next line.
 (f) period. A period ends the input mode and returns to the
 command level.

 In the example that follows, assume that the "@" register contains
 the value 2800H.

 -SM@100
 2900 0100' 32 0
 290l 0101' 17 00
 2902 0102' 31 'THIS IS AN ASCII STRING'
 2919 0119' 7A 'AAAA' 0 0 1 2 3 4 5 6 7 8 9
 2928 0128' 22
 2929 0129' 29
 292A 012A' 87 -
 2929 0129' 29 .

 SR - SUBSTITUTE REGISTER

 The Sr command allows the user registers to be altered. The
 letter "r" stands for the register which is to be changed. The
 section SUMMARY OF REGISTER NAMES gives a summary of the names
 that can be substituted. When substituting the F and F' flags, enter the
 command SF or SF'. DEBUG will then print the f1ags that are set and
 wait for the operator to enter the names of the registers that are to be
 set. If the flags are not entered, the flags are reset. In the following
 example, the "SZHC" flags are set. After the example is executed the
 "ZC" flags are set. The lower case, letters are entered by the operator.

 -sf
 SZH C zc

 When sustituting a one byte register, a one byte value is accepted.
 When substituting a two byte register, a two byte value is accepted. If
 no value is entered, or if an error occurs, the value of the register
 remains unchanged. In the following example, the A register is changed
 to contain 41H.

 -sa
 A=98 41

 Page 91

 T - TRACE

 The format of trace is

 T (CR)
 T number-of-lines (CR)

 The first format traces the program through one instruction. The
 second format traces the program through "number-of-lines"
 instructions. After every instruction traced, the values of the user
 registers are printed in the same format as the "DR" command.
 You can trace only through RAM. The trace command places a break
 point after the instruction, loads the registers and executes the
 instruction. The break point is then executed and the registers are
 resaved. The registers are printed, and the next instruction is
 executed unless the count has reached zero, in which case a prompt is
 printed and you may enter the next command.
 To abort the trace, hit any key on the console. A prompt will be
 printed and you may enter the next command.

 TN - TRACE WITH NO PRINTING

 The "TN" command is the same as the "T" command with the exception
 that after every instruction is traced, the registers are not printed.
 Only the last traced instruction is printed.

 V - VERIFY MEMORY

 Verify that the block of memory between source address and source
 end contain the same value as the block beginning at destination
 address. The addresses and contents are printed for each discrepancy
 found. The following is the format of this command.

 V source-addr source-end destination-addr
 V source-addr S swath-width destination-addr

 This command works by reading bytes from the source and destination
 and comparing them. If a discrepancy is found, the memory is read again
 for print-out. Thus, it can happen that a discrepancy is printed-out
 with the source and the destination contents indicated to be the same.

 This is caused by a defective memory element.
 A discrepancy is printed in the following order, source address,
 source contents, destination contents, destination address. In the
 example that follows, memory locations 1003H and 1008H are defective.

 -V 0 S30 1000
 0003 32 12 1003
 0000 7A 5A 1008
 -

 Page 92

 CHAPTER 3: SUMMARY OF DEBUG COMMANDS

 The following is an alphabetical list of the DEBUG commands.

 Command Description
 ------- -----------

 A Assemble into memory

 DM Display Memory

 DR Display Register

 E Examine input port

 EJ EJect disk

 F specify disk File name

 G Go

 H Hexadecimal arithmetic

 L List in assembler mnemonics

 M Move memory

 0 Output to data port

 P Program PROMs

 R Read disk file

 SM Substitute Memory

 Sr Substitute register

 T Trace

 TN Trace with No print (DEBUG only)

 V Verify memory

 Page 93

 +++++++++++++++++++++++++
 SUMMARY OF REGISTER NAMES
 +++++++++++++++++++++++++

 The following register names are printed by the DM command and should
 be used with the Sr command.

 Register Description
 -------- -----------

 F Flags, the following flags may be changed.
 S - Sign flag
 Z - Zero flag
 H - Half carry flag
 V - parity/oVerflow flag
 N - subtractioN flag
 C - Carry flag

 The interrupt enable flag ("E") may also be changed.

 F' The F' flags are the same as the "F" flags.
 (note that the "E" flag may not be changed here.)

 A accumulator

 A' prime accumulator

 B BC register pair

 B' BC' register pair

 D DE register pair

 D' DE' register pair

 H HL register pair

 H' HL' register pair

 S Stack pointer

 P Program counter

 X IX register

 Y IY register

 I Interrupt page register

 Page 94

 PART IV - CDOS PROGRAMMER'S MANUAL

 Page 95

 CHAPTER 1: INTRODUCTION TO CDOS SYSTEM CALLS

 This section of the manual descibes the use of CDOS system
 calls. CDOS handles disk files, performs device input and
 output, and contains a number of useful subroutines.

 +++++++++++++++++
 Memory Allocation
 +++++++++++++++++

 CDOS resides in high memory. It reserves memory below 100H for
 its own use. The user is left all memory from 100H to the
 beginning of CDOS (see below).

 A program with the extent ".COM" can be loaded and executed by
 merely typing the program name. The program must have its origin
 at 100H because that is where CDOS loads and executes it. (Note
 that when saving files that have been linked using the CROMEMCO
 Linker, they can be ORGed anywhere because LINK automatically puts
 the correct jump instruction at 100H.) After it is loaded, the
 program can use any memory at all. Note however, that if it alters
 the CDOS areas, it will have no way of communicating with the
 disk or returning to CDOS. (CDOS would have to be reloaded by
 resetting the computer.)

 CDOS places a jump instruction at bytes 0, 1 and 2. If a jump
 is made to location 0, the CDOS warm start, control will be returned
 with the prompt for the current drive (eg, "A."). Command lines

 may then be entered from the console keyboard. CDOS places another
 jump instruction at locations 5, 6 and 7. The normal way to make
 system requests of CDOS (those described below) is to call location 5.
 The address stored at locations 6 and 7 is the address of the
 beginning of CDOS znd thus marks the upper limit of user memory.

 The following address map describes the memory area from 0 to 0FFH.
 All addresses are in hex.

 0...2 CDOS re-entry
 3 I/O byte
 4 reserved
 5...7 system request call
 8...40 interrupt vectors
 40...5B reserved
 5C...6B default File Control Block 1 (FCB-1)
 6C...7B default File Control Block 2 (FCB-2)
 7C...7F reserved
 80...FF defau1t command-line buffer

 Page 96

 When a .COM program is run by typing the program name on the
 console, the default command-line buffer and default file control
 blocks are used as follows. FCB-1 will contain the first filename,
 if any, typed after the program name. FCB-2 will contain the
 second filename, if any. The default buffer will contain the
 entire command line following the program name. For example, if
 this command line is typed:

 PROG FILE1.Z80 FILE2.COM

 CDOS will place "FILE1Z8O" in FCB-1, "FILE2COM" in FCB-2,
 " FILE1.Z80 FILE2.COM" in the command-line buffer, and load
 and execute PROG.COM at 100H. Note that the second FCB starts
 before the end of the first FCB. Before using FCB-1, FCB-2
 should be moved. If it is not moved, part of FCB-1 will be
 destroyed.

 The command line which is placed in the default buffer can be
 used to send more than two filenames to a program, or to start
 execution of a program with various options specifed. For the
 following command line:

 PROG FILE1.Z8O FILE2.COM OPTION1 OPTION2

 the string of ASCII characters " FILE1.Z8O FILE2.COM OPTION1 OPTION2"
 will be stored beginning at location 81H. The byte at location
 80H will contain the length of the string. The byte following
 the string will contain a null (00). PROG.COM can then look at
 the command line stored in the default buffer to determine which
 options were specified.

 When a program is loaded, the disk buffer is set to 80H, which
 is the default command buffer. If the disk is then read to or

 written from, this buffer will be altered. The program must
 either reset the disk buffer to another area or move the command
 line before accessing the disk, if it is desired to save the
 command line.

 Page 97

 **
 CHAPTER 2: DEVICE I/O - LIST OF CDOS SYSTEM CALLS
 **

 CDOS has a set of system calls for device input and output. ALL
 input and output should be done through these calls. This allows user
 programs to be independent of physical devices. If a change needs to
 be made in a device driver, it has only to be done once in the
 system drivers. This chapter gives a detailed description of the
 CDOS system calls. They are roughly divided into three sections:
 the first section covers device I/O, where all devices are included
 except disk drives. The next section covers the system calls
 used to access disk files (disk I/O, opening and closing files,
 etc.) The last section covers several useful additional calls.
 To use one of these routines the C register must be set to the
 function number given below with the title of each instruction.
 The other registers are set-up as that function requires (for
 example the E or DE registers usually contain the parameter passed),
 and a "CALL 5" instruction is executed. [Remember that CDOS
 initializes location 5 with a jump instruction. This is done so
 that the location of CDOS in memory is transparent to a user
 program. A user program using the CDOS system functions does
 therefore not need to do a CALL to a particular address in CDOS.]
 For a complete summary of the CDOS system calls, refer to Chapter 3.
 The system calls given below are in numerical order in each of the
 three sections.

 ++++++++++++++++++++++++++
 CDOS DEVICE FUNCTION CALLS
 ++++++++++++++++++++++++++

 These system calls involve device I/O with all devices except disk
 drives. The number given preceding each CDOS function is the number
 which should be loaded into the C register prior to the "CALL 5".
 The number is given first in hex and then in decimal in parentheses.

 1 - READ CONSOLE (with echo)

 This call is used to retrieve one byte from the console. The byte
 will be returned in the A register. CDOS does not return to the
 user program until a character is read and echoed back to the console.
 The parity bit is set to 0. Note that a Control-Z (^Z) character is
 usually considered an end of file mark.

 Page 98

 2 - WRITE CONSOLE

 This call is used to write one ASCII character to the console. The
 character is placed in the E register before the call. CDOS will wait
 until the console is ready to recieve the character and then print it.

 After Control-P (^P) is typed all subsequent characters are sent
 to both the console and the printer, until a second control-P is
 typed (thus Control-P acts as a toggle switch). Control-W also
 causes subsequent chacters to be sent to both the console and
 the printer, and Control-T causes them to be sent only to the
 console again. Control-W and Control-T are usually edited into a
 file so that when that file is typed out on the console, it can stop
 and start the printer at the appropriate places.

 Control-I is the tab control. It is converted to spaces so that
 the cursor is positioned at one of the standard tab stops, 1, 9,
 17, 25, 33, 41,... However, the tab is still stored internally in
 a file as the single ASCII character, 09H.

 3 - READ READER

 This call will read one character from the paper tape reader. A11
 8 bits are read. The character will be returned in the A register.
 If it is the end-of-file character (Control-Z), the ZERO flag is set.

 4 - WRITE PUNCH

 This call will punch one character on the paper tape punch. All
 8 bits are punched. The character is placed in the E register before
 the call. CDOS will wait until the punch is ready to receive the
 character.

 5 - WRITE LIST

 This call will print a character on the printer. Before the ca11,
 the character to be printed is placed in the E-register. Tabs are
 not expanded. CDOS will wait for the printer to accept the character
 before it returns.

 7 - GET I/O BYTE

 For extra I/O devices, an "IOBYTE" has been provided. This byte
 is not currently used by CDOS, but it is provided for the user's
 programs. This function call returns the "IOBYTE" in the A register.
 The format of the byte is:

 BIT : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0 :
 : PRN : PUNCH : READER : CONSOLE :

 Thus up to eight consoles can be designated, four each of paper-tape
 punch and reader, and one printer.

 Page 99

 8 - SET I/O BYTE

 This call allows the user program to set the "IOBYTE". The E register
 contains the byte prior to the call. See above for the format of the
 byte.

 9 - PRINT BUFFER

 This call will print a string of ASCII characters which has been
 terminated with the "$" character. The DE register pair is set up
 with the address of the beginning of the string before the call is
 made to CDOS. If the printer toggle is on, the message will also
 be sent to the printer.

 10 (0AH) - INPUT BUFFERED LINE

 This call will read an input line from the console. The DE register
 must be pointing to an available buffer before the call is made to
 CDOS. The first byte of the buffer must contain the maximum length
 of the buffer. On return from this call the second byte of the
 buffer will contain the actual length entered. The line that is
 input will be stored beginning at the third byte. If the buffer
 is not full, the byte at the end of the line will contain a zero.

 When the line is being entered, the following characters will have
 a special meaning:

 Control-C (^C) Abort. Warm boot back to CDOS.
 Control-E (^E) Physical CR-LF. The line is not
 terminated and nothing is entered
 into the buffer. This character is
 used to enter a line longer than
 can be printed on the console.
 Control-P (^P) Toggle printer/console link. When this
 character is first typed, the link is
 toggled ON. All characters will then
 be sent to the console and the printer.
 The next time the character is typed,
 the toggle will be turned off. All
 characters will then be sent to the
 console only.
 Control-R (^R) Repeat what has been typed so far on
 the line.
 Control-U (^U) Delete the entered line and go back
 to beginning of buffer for new line.
 Control-X (^X) Delete the previous character and
 echo the deleted character (used for
 hard-copy terminals).
 RUBout Delete the previous character and back

 up the cursor (used for CRT terminals).
 DEL Same as RUBout.
 Underscore Same as RUBout.
 Backspace (^H) Same as RUBout.

 Page 100

 11 (OBH) - TEST CONSOLE READY

 The console is tested to see if a character has been typed. If a
 character has been typed, 0FFH is returned in the A register. If no
 character has been typed, 0 is returned in the A register.

 128 (80H) - READ CONSOLE (without echo)

 This call is the same as "READ CONSOLE (with echo)" except that
 it does not echo the character after it is read. The byte is
 returned in the A register.

 142 (BEH) - SET CURSOR ADDRESS

 This call will set the cursor at the specified address. This command
 will only work when the console is a CRT with cursor addressing. The
 D register is set up with the column address (1 through 80 for most
 CRT's) and the E register is set up with the row address (1 through
 24 for most CRT's).

 ++++++++++++++++++++++++
 CDOS DISK FUNCTION CALLS
 ++++++++++++++++++++++++

 CDOS divides the disk into regions called files. Files are
 referenced through file control blocks (FCBs). FCBs are 33 bytes
 long and have the following format, where each of the numbers below
 stands for one byte:

 FCBDK Disk descriptor 0 (0=current disk, 1=drive-A,
 2=B, 3=C, 4=D)
 FCBFN File name 1...8 (right-filled with blanks)
 FCBFT File type (extension) 9...11 (right-filled with blanks)
 FCBEX File extent 12 (initially 0; is incremented
 by one in every new
 extent of 16 Kbytes)
 Reserved 13...14
 FCBRC Record count 15 (total number of 128-byte
 sectors or records)
 FCBMP Cluster allocation map 16...31 (allocated clusters 2
 through 240)
 FCBNR Next record 32 (next record to be read or
 written; has the value
 0 through 127)

 It should be noted that directory entries on the disk consist of

 32-byte FCBs. The last byte, FCBNR, which points to the next record,
 is omitted.

 Page 101

 12 (0CH) - DESELECT CURRENT DISK

 The current disk is deselected. The CDOS disk driver can be changed
 to perform any desired function at this time to deselect the disk.
 Currently the driver outputs a 0 to part 34H when this function is
 selected.

 --
 13 (ODH) - RESET CDOS AND SELECT DRIVE A
 --
 CDOS is initialized, all disks are logged-off, and drive A is
 selected as the current drive. The other disks will be logged-on
 again as soon as they are accessed.

 14 (0EH) - SELECT DISK DRIVE

 The disk drive number in the A register is selected as the current
 disk. The drive number in the A register is 0 for drive A, 1 for
 drive B, 2 for drive C, or 3 for drive D.

 15 (0FH) - OPEN DISK FILE

 The FCB pointed to by the DE register pair is opened to allow reading
 or writing to the file whose name is specified in the FCB. The A
 register returns with -1 (OFFH or 255D) if the file is not found,
 or the directory block number if the file is found. Block numbers
 start at 0 and there is one block number for every four directory
 entries. The HL register pair returns pointing to the directory
 entry in memory.

 16 (10H) - CLOSE FILE

 The FCB pointed to by the DE register pair is closed and the disk
 directory is updated. The file described by the FCB must have been
 previously opened or created; if it has not been, an unpredictable
 directory entry will be written to the disk. A file to which bytes
 have just been written MUST be closed using this function or the
 entire last extent will be unable to be read.

 17 (11H) - SEARCH DIRECTORY

 The directory is searched for the first occurrence of the file
 specified in the FCB pointed to by the DE register pair. ASCII "?"
 (3FH) in the FCB matches any character. The block number (see
 description of directory block numbers in 0FH - Open Disk File, above)
 is returned in the A register if found, if the file is not found, -1
 (0FFH or 255D) is returned in A. HL is returned pointing to the

 directory entry in memory. An important point to note about this
 call and the one following (12H) is that they will get the directory
 entry whether it has been erased or not; ie, these calls do not check
 to see if a file has been erased. Files are erased by placing a 0E5H
 in the first byte (FCBDK); the rest of the FCB is left unchanged.

 Page 102

 l8 (12H) - FIND NEXT DIECTORY ENTRY

 This call is the same as 11H (17) above except that it finds the
 NEXT occurrence of the filename in the directory. This may be either
 the next extent of a file occupying more than one extent, or another
 filename if the match-character, "?", was used in the FCB. This
 call is made after function 17 and no other disk system call can be
 made between these calls.

 19 (13H) - DELETE FILE

 The file specified by the FCB pointed to by the DE register pair is
 deleted from the disk directory. ASCII "?" in the FCB matches any
 character. The number of directory entries deleted is returned in the
 A register.

 20 (14H) - READ NEXT RECORD

 The DE register pair points to a successfully OPENED FCB. The next
 record (128 bytes) is read into the current disk buffer. The FCBNR in
 the FCB is incremented to read the next record. One of the following
 codes is returned in the A register:

 0 - read completed
 1 - end of file
 2 - read attempted on unwritten cluster
 (random access file only)

 21 (15H) - WRITE NEXT RECORD

 The DE register pair points to a successfully OPENED FCB. The next
 record (128 bytes) is written into the file from the current disk
 buffer. The FCBNR in the FCB is incremented to be ready to write
 the next record. One of the following codes is returned in the
 A register:

 0 - write completed
 1 - extent error (attempted to close an unopened extent)
 2 - out of disk space (limited to 81K - small, 241K - large)
 -1 (0FFH or 255D)
 - out of directory space (limited to 64 extents)

 22 (16H) - CREATE FILE

 The file specified in the FCB pointed to by the DE register pair is
 created on the disk. The A register is returned containing the
 block number of the directory entry (see 0FH - Open Disk File), or
 -1 (0FFH or 255) if no more directory space is available.

 Page 103

 23 (17H) - RENAME FILE

 This call will rename a disk file. The DE register pair points to
 the FCB to be renamed. The old file name and file type are in the
 first 16 bytes and the new file name and file type are in the second
 16 bytes of the FCB. ASCII "?" in the FCB will match with any
 character. The A register returns containing the number of directory
 entries renamed.

 24 (18H) - DISK LOG-IN VECTOR

 The A register is returned, specifying the disks that are logged-in.
 Each bit represents one disk drive logged-in. If the bit is a one,
 then it is logged-in; else it is offline. The least significant bit
 is the A drive, next most significant (Bit 1) is drive B, etc. Since
 there would be no more than four drives, the upper four bits are 0's.

 25 (19H) - CURRENT DISK

 The number of the current disk drive is returned in the A register.
 0 = drive A, 1 = drive B, 2 = drive C, 3 = drive D.

 26 (1AH) - SET DISK BUFFER

 The buffer pointed to by the DE register pair is used for disk I/O.
 When a program is loaded, the disk buffer is initially located at 80H.

 27 (1BH) - DISK CLUSTER ALLOCATION MAP

 The BC register pair returns pointing to a bit map that corresponds
 to the allocated clusters on the disk. The DE register pair returns
 containing the capacity of the current disk in number of clusters.
 The A register returns containing the number of records or sectors
 per cluster (8). This system call is used by "STAT".

 131 (83H) - READ LOGICAL BLOCK

 This system call will read a logical block from the disk without any
 attention to the files it may contain (ie, no FCB is specified). A
 block is defined to be one sector or record of 128 bytes. When this
 function is called, the DE register pair should contain the block
 number and the B register should contain the disk number (0 for
 current drive, 1-4 for A-D). The high bit of the B register contains
 a 1 for an interleaved and a 0 for a non-interleaved read. Interleaved

 means the block which is read is found in the order CDOS stores it
 (every fifth sector for small disks and every sixth sector for large
 disks). Non-interleaved means the block which is read is found in
 sequential order, the order it is physically stored on the disk.
 The A register is returned with the status of the read according to
 the following:

 Page 104

 0 - OK
 1 - I/0 error
 2 - illegal request
 3 - illegal block

 An example will help to illustrate these points. CDOS makes use of
 716 sectors on the small floppy disks. Therefore, the block numbers
 which could legally he loaded into the DE register are 0 through
 715 decimal, or 0 through 2CBH. Suppose that DE is loaded with the
 Value 2 and the B register with 0 (current disk, noti-interleaved read).
 Thus, since the sectors are numbered beginning with 1, sector 3 would
 be read into memory in the disk buffer (located at 80H if it has not
 been changed). The same read with the B register loaded with 80H
 (current disk, interleaved read) would read sector OBH (the third
 sector when they are read every fifth one).

 132 (84H) - WRITE LOGICAL BLOCK

 This system call will write a logical block or sector to the disk
 without any attention to the file there (no FCB is specified). The
 registers are set up and returned in the same way as they were for
 the Read Logical Block system call above.

 134 (86H) - FORMAT NAME TO FCB

 This system call will build a File Control Block. The HL register
 pair points to the start of the input line. The DE register points
 to the place in memory where the FCB is to be built. The input
 line is of the format:

 d:filename.ext

 where d stands for one of A-D, the filename is up to 8 letters with
 a 3-letter extension. The FCB is then built from this input line,
 converting lower case to upper case. The input line is terminated
 by an ASCII "/" or any character less than 21H (such as a space or
 carriage return).

 On return the HL register pair points to the terminator that ended
 the build operation. The DE register pair points to the start of the
 new FCB.

 135 (87H) - UPDATE DIRECTORY ENTRY

 The last disk I/O function called must have been function 17 or 18,

 Search Directory or Find Next Entry. The DE register pair points
 to the FCB used in the function call 17 or 18. The directory entry
 is then updated on the disk; this means that the entry is written
 back to the disk without the user having to specify a block. The
 user merely specifies a filename when calling 17 or 18. This is
 useful if it is desired to change a directory entry and write it
 back to the disk.

 Page 105

 139 (8BH) - HOME DISK

 The disk drive specified in the B register (0 for current drive and
 1-4 for drives A-D) is sent a command to "home" the head. The disk
 drive head will return to track 0.

 140 (BCH) - EJECT DISK

 This call will eject the disk whose number is given in the E register
 (0 for current drive and 1-4 for drives A-D, respectively), only if
 the disk drive is a CROMEMCO Dual Disk Drive System, Model PFD with
 the eject option. Otherwise, the call will have no effect.

 +++++++++++++++++++++++
 ADDITIONAL SYSTEM CALLS
 +++++++++++++++++++++++

 Several additional CDOS system calls have been added for the pro-
 grammer's convenience. These calls are explained in this section.

 0 - ABORT

 This call will abort the current program and return control to CDOS.
 This call has the same effect as jumping to location 0.

 129 (81H) - GET USER REGISTER POINTER

 This call is provided for future expansion of CDOS to a multipro-
 gramming system. The BC register pair returns pointing to the
 user register pointers.

 130 (82H) - SET USER CONTROL-C ABORT

 When Control-C (^C) is typed, the system usually aborts and returns
 control to CDOS. This call allows the programmer to assign an
 address to which to jump when Control-C is typed (ie, users can
 assign their own function to Control-C). The address is given in
 the DE register pair. Note that if DE contains a zero, the system
 abort is reset. Jumping to location 0 at any time still causes a
 return to CDOS, also with the Control-C being restored to its
 original function.

 136 (88H) - LINK TO PROGRAM

 This enables one command program to call another. The default
 command-line buffer and default FCBs for the new program must be
 set up prior to this call if that program expects to be able to
 use them. The DE register pair should contain the address of the

 Page 106

 FCB of the new program (which must have an extension of ".COM").
 If the new program is NOT found, the A register returns containing
 -1 (0FFH or 255); also in this case the first 80H bytes (from 100H to
 17FH) will be destroyed because this is used in reading the directory.
 Otherwise, execution begins at 100H and no return is made to the
 origina1 program.

 137 (89H) - MULTIPLY

 This system call provides a 16-bit multiply. The HL and DE register
 pairs contain the two 16-bit factors, and the answer is returned in
 register DE (ie, DE = DE*HL).

 138 (8AH) - DIVIDE

 This system call provides a 16-bit divide. The HL register pair
 should contain the dividend, and the DE register pair, the divisor.
 The quotient is returned in HL, and the remainder in DE (ie,
 HL = HL/DE with DE = remainder). DE contains the remainder.

 141 (8DH) - GET VERISION NUMBER

 This call will return the version-number of CDOS in the B register
 and the release-number in the C register.

 Page 107

 **
 CHAPTER 3: SUMMARY OF CDOS FUNCTION CALLS
 **

 Following is a summary table listing all the system calls described
 in Chapter 2 along with their entry and return parameters. The
 functions are listed in numerical order, ie, by order of the number
 which is loaded into the C register to achieve the desired function.

 NUMBER FUNCTION ENTRY PARAMETERS RETURN PARAMETERS
 --
 0 ABORT none none

 1 READ CONSOLE none A = character
 (with echo)
 2 WRITE CONSOLE E = character none
 3 READ READER none A = character
 Z flag set = end of file
 4 WRITE PUNCH E = character none
 5 WRITE LIST E = character none
 7 GET I/O BYTE none A = I/O byte
 8 SET I/O BYTE E = I/O byte none
 9 PRINT BUFFER DE = buffer address none
 10 (0AH) INPUT BUFFERED DE = buffer address none
 LINE
 11 (0BH) TEST CONSOLE none A = OFFH (-1) if ready
 READY A = 0 if not ready
 12 (0CH) DESELECT none none
 CURRENT DISK
 13 (ODH) RESET CDOS AND none none
 SELECT DRIVE A
 14 (OEH) SELECT DISK E = disk drive none
 15 (0FH) OPEN DISK FILE DE = FCB address A = directory block
 A = OFFH if not found
 16 (10H) CLOSE FILE DE = FCB address none
 17 (11H) SEARCH DE = FCB address A = directory block
 DIRECTORY A = 0FFH if not found
 18 (12H) FILE NEXT ENTRY DE = FCB address A = directory block
 A = 0FFH if not found
 19 (13H) DELETE FILE DE = FCB address A = number of entries
 deleted
 20 (14H) READ NEXT DE = FCB address A = 0 if ok
 RECORD A = 1 if end of file
 A = 2 if tried to read
 unwritten records
 21 (15H) WRITE NEXT DE = FCB address A = 0 if ok
 RECORD A = 1 if extent error
 A = 2 if out of disk
 space
 A = -1 (0FFH) if out
 of directory space

 Page 108

 NUMBER FUNCTION ENTRY PARAMETERS RETURN PARAMETERS
 --
 22 (16H) CREATE FILE DE = FCB address A = directory block
 A = 0FFH if not found
 23 (17H) RENAME FILE DE = FCB address A = number of entries
 renamed
 24 (18H) DISK LOG-IN none A = those disks
 VECTOR logged-in
 25 (19H) CURRENT DISK none A = disk number
 26 (1AH) SET DISK BUFFER DE = buffer address none
 27 (lBH) DISK CLUSTER none BC = address of bitmip
 ALLOCATION MAP DE = number of clusters
 A = sectors/cluster
 128 (80H) READ CONSOLE none A = character
 (with no echo)

 129 (81H) GET USER none BC = pointer to user
 REGISTER register
 POINTER pointerrs
 130 (82H) SET USER DE = address none
 CONTROL-C
 ABORT
 131 (83H) READ LOGICAL DE = block number A = 0 if ok
 BLOCK B = disk number A = 1 if I/O error
 B top bit = 1 if A = 2 if illegal request
 interleaved A = 3 if illegal block
 132 (84H) WRITE LOGICAL DE = block number A = 0 if ok
 BLOCK B = disk number A = 1 if I/O error
 B top bit = 1 if A = 2 if illegal request
 interleaved A = 3 if illegal block
 134 (86H) FORMAT NAME HL = address of HL = address of
 TO FCB string terminator
 DE = FCB address DE = FCB address
 135 (87H) UPDATE DE = FCB address none
 DIRECTORY ENTRY
 136 (88H) LINK TO PROGRAM DE = FCB address A = -1 if error, else
 execute at 100H
 137 (89H) MULTIPLY DE = factor 1 DE = product
 HL = factor 2
 138 (8AH) DIVIDE HL = dividend HL = quotient
 DE = divisor DE = remainder
 139 (8BH) HOME DISK B = disk number none
 140 (8CH) EJECT DISK E = disk number none
 141 (8DH) GET VERSION none B = version-number
 C = release-number
 142 (8EH) SET CURSOR D = column address none
 ADDRESS E = row address

 Page 109

 PART V - ASSEMBLER LIBRARY ROUTINES

 Page 110

 **
 CHAPTER 1: ROUTINES AVAILABLE IN ASMLIB
 **

 The library file "ASMLIB.REL" has been provided for your use in
 assembly language programming. There are three types of routines
 (decimal conversion, hexadecimal conversion, and character I/O).
 An example of how to add these routines to your program follows.

 LINK PROG,ASMLIB/S/G

 This example will load a program called "PROG" and then load only
 the routines in "ASMLIB" that are required. See Part II on LINK for
 more information.

 ++++++++++++++++++
 DECIMAL CONVERSION
 ++++++++++++++++++

 ADEC - DECIMAL TO BINARY CONVERSION

 This routine will convert a decimal string to a binary number.
 The following example will illustrate how to use this routine.

 LD BC,STRING ;point to ASCII string
 CALL ADEC ;convert to binary

 The routine will return with the HL register pair containing the
 16-bit binary number and the BC register pair pointing to the first
 non-digit.

 BINDF, BINDB, BINDS, BIND - CONVERT BINARY TO DECIMAL

 These routines will convert a binary number into a decimal string.
 The routine "BINDF" will zero fill, "BINDB" will fill with spaces,
 "BINDS" will suppress printing of leading zeros, and "BIND" will fill
 with the character in the A register. In the following example leading
 zeros will be printed as "*"s.

 LD HL,STRING ;store ASCII string here
 LD BC,(BINARY) ;this is binary number
 LD A,'*' ;fill character
 CALL BIND ;convert to ASCII string

 Six bytes most be reserved for the string, unless "BINDS" is used,

 in which case this routine will use only the number of bytes that are
 not leading zeros.

 Page 111

 HEXADECIMAL CONVERSI0N

 AHEX - ASCII TO HEX CONVERSION

 This routine will convert a hexadecimal string to a binary number.
 The calling sequence is

 LD BC,STRING ;point to ASCII string
 CALL AHEX ;convert to binary

 The routine will return with the HL register pair containing the
 binary number and the BC register pair pointing to the first non-
 hexadecimal digit.

 BINH4 - BINARY TO 4 HEX DIGITS

 This routine will convert the binary number in the BC register
 pair to 4 ASCII digits. The calling sequence is

 LD BC,(NUMBER) ;get binary number
 LD HL,STRING ;store ASCII String here
 CALL BINH4 ;convert to ASCII

 BINH2 - BINARY TO 2 HEX DIGITS

 This routine will store 2 ASCII digits. The calling sequence is

 LD A,(NUMBER) ;get binary number
 LD HL,STRING ;store ASCII string here
 CALL BINH2

 BINH1 - BINARY TO 1 HEX DIGIT

 This routine will store 1 ASCII digit. The calling sequence is

 LD A,(DIGIT) ;get binary digit (lower 4 bits of A)
 LD HL,STRING ;store digit here
 CALL BINH1

 Page 112

 ++++++++++++++++++++++
 CHARACTER I/O ROUTINES
 ++++++++++++++++++++++

 Providing character I/O which is device independent adds considerable
 power to a program. These routines allow opening a file by symbolic name
 (disk or device) and then calling the same routines for I/O. There are
 routines for both ASCII and BINARY data. The binary calls pass 8 bits of
 data. The ASCII calls pass only printable characters plus carriage return,
 line feed, and tab. All other characters are passed as two characters
 (an up arrow and the corresponding printable character; eg, Control-B
 would be printed as "^B"). Devices are referenced by using the following
 symbolic names; all others are considered disk files.

 RDR:[#] - reader (0..4)
 PUN:[#] - punch (0..4)
 LST:[#] - printer (0..1)
 PRT:[#] - printer (0..1)
 CON:[#] - console (O..7)
 DUM: - dummy

 The option number is set into the "IOBYTE" to select device units.
 The symbolic name "DUM:" is used to throw away output, or as end of file.

 An extended FCB (XFCB) is used which includes character pointers.
 When the XFCB is initialized, the number of buffers are specified (each
 is 128 bytes). Only disk files use the buffers.

 The format of the XFCB follows.

 name position length description
 ---- -------- ------ -----------
 ZCNT 0 1 byte count (O..127 or 255)
 ZFLG 1 1 flags
 ZFCB 2..34 33 CDOS file control block (FCB)
 ZBPTR 35..36 2 buffer pointer (1st buffer)
 ZBCUR 37 1 current buffer
 ZNBUF 38 1 number of buffers
 ZFBUF 39 1 full number of buffers
 --------------- -----------------------------
 40 total length

 The byte count indicates a non-disk device if it contains 255. ZFLG
 will then contain the system call for that device. The followino are the
 flags.

 RDR: 3
 PUN: 4
 LST: 5
 PRT: 5
 CON: 1
 DUM: 0

 Page 113

 The initial format of an XFCB should be

 DEFB 0
 DEFS 34
 DEFW buffer address,0
 DEFB number of buffers

 FNAME - SET UP XFCB

 This routine sets up an XFCD from an FCB. If the routine is called
 with the A register equal to 0, then the extension in the FCB is used.
 If the A register is not equal to 0, then the A, B, and C registers
 contain the extension that is to be used. The example below will set up
 an XFCB from the system FCB at location 5CH with an implied extension
 of ".PRN".

 LD HL,5CH ;point to system FCB
 LD DE,XFCB1 ;point to XFCB
 LD A,'P' ;".PRN" extension
 LD BC,'RN'
 CALL FNAME ;build XFCB

 XDISK - SET UP SPECIAL XFCB

 This routine will modify an XFCB using a letter in the A register.
 If the A register contains A through W, this is considered to be a disk
 identifier. If the A register contains "X", the XFCB is converted to use
 the console. If it contains a "Y", the XFCB is converted to use the list
 device. If it contains a "Z", then the XFCB is converted to use the dummy
 driver. This routine allows the decoding of parameters such as the
 assembler uses for its files. In the following example the XFCB is
 converted to use the console.

 LD DE,XFCB ;point to the XFCB
 LD A,'X' ;make it the console
 CALL XDISK ;convert XFCB

 ZNEW - OPEN NEW XFCB

 This routine will delete any old file with the same name and then
 create and open a new file. If there is an error the ZERO flag is set
 and the HL register pair points to an error message. In the following
 example a new file is created.

 LD DE,XFCB ;point to XFCB
 CALL ZNEW ;create a new file
 CALL Z,ZIOER ;print error and abort

 Page 114

 ZOPN - OPEN OLD XFCB

 This routine will open an existing file. If there is an error the
 ZERO flag is set and the HL register pair points to an error message.
 In the following example an old file is opened.

 LD DE,XFCB ;point to XFCB
 CALL ZOPN ;open the file
 CALL Z,ZIOER ;print error and abort

 ZCLOS - CLOSE XFCB

 This routine will close a file. In the follwing example a file is
 closed.

 LD DE,XFCB ;point to XFCB
 CALL ZCLOS ;close the file
 CALL Z,ZIOER ;print error and abort

 PCHAR - PUT CHARACTER (BINARY)

 This routine is used to output binary characters. In the following
 example a character is output.

 LD DE,XFCB ;point to XFCB
 LD C,(HL) ;get character to output
 CALL PCHAR ;output character
 CALL Z,ZIOER ;print error and abort

 PUTC - PUT CHARACTER (ASCII)

 This routine is used to output ASCII characters to a disk file or
 a device such as the console, a printer, etc. In the following example
 a character is output.

 LD DE,XFCB ;point to XFCB
 LD C,(HL) ;get character to output
 CALL PUTC ;output character
 CALL Z,ZIOER ;print error and abort

 Page 115

 GCHAR - GET A CHARACTER

 This routine is used to input characters from a disk file or a
 device. In the following example, a character is returned in the A
 register.

 LD DE,XFCB ;point to XFCB

 CALL GCHAR ;get a character
 CP 1AH ;Q, end of file
 JP Z,EOF ;yes, end of file

 When an unwritten random record is read, it is treated as an end
 of file.

 ZIOER - PRINT FILE ERROR MESSAGE

 This routine is the standard error routine. When an error occurs
 in one of the file handling routines, the HL register pair points to
 the error message, the DE register pair points to the XFCB, and the
 ZERO flag is set. This allows the instruction "CALL Z,ZIOER" to follow
 a disk handling routine. In the following example, a character is written.
 If there is an error, it will be printed and control will be passed to
 CDOS.

 LD DE,XFCB ;point to XFCB
 LD C,(HL) ;get a character
 CALL PUTC ;output character
 CALL Z,ZIOER ;print error and abort

 PFNAM - GET FILE NAME FOR PRINTING

 This routine will extract the file name from the XFCB and form a
 printable string. The string will be in the following format

 d:filname.ext

 Where d: is an optional disk number (A-D), filename is the name
 of the user file (1 to 8 characters), and ext is the filename extension
 (0 to 3 characters). The string is terminated by a byte equal to zero.
 The length of the string is returned in the A register. In the following
 example a string is formed from the XFCB.

 LD DE,XFCB ;point to XFCB
 LD HL,BFLINE ;store string here
 CALL PFNAM ;form string
 CALL PRNT ;print the file name

 Page 116

 PRNT - PRINT A LINE

 This routine will print a string which ends with either a zero-byte
 or a carriage return. If a carriage return is found, the carriage return
 and a line feed is output. In the following example the string
 "THIS IS A STRING" is output.

 LD HL,STRING ;point to string
 CALL PRNT ;print the string
 :
 :
 STRING: DEFB 'THIS IS A STRING',0

 ABORT - ABORT USER PROGRAM

 This routine will print a message and then abort to CDOS. The
 format of the message is the same as in the previous example. In the
 following example the message "*** END OF JOB ***" is output to the
 console and control is returned to CDOS.

 LD HL,STRING ;point to string
 CALL ABORT ;abort program
 :
 :
 STRING: DEFB '*** END OF JOB ***',13

 Page 117

 CHAPTER 2: AN EXAMPLE

 The program "EXAMPLE.Z80" has been included as an example. To run
 this example use the batch file "EXAMPLE.CMD". The first line of the
 example is typed by the user. The rest of the example is typed by the
 computer.

 B.@ EXAMPLE
 BATCH VERSION 00.02

 B.ASMB EXAMPLE.AAX
 CROMEMCO CDOS Z80 ASSEMBLER version 02.02

 Page 118

 CROMEMCO CDOS Z8O ASSEMBLER version 02.02 PAGE 0001
 *** EXAMPLE ***

 0002 ;
 0003 ;THIS PROGRAM WILL INPUT FROM ONE
 0004 ;DISK FILE OR DEVICE
 0005 ;AND OUTPUT TO ONE DISK FILE OR DEVICE
 0006 ;
 0007 ;TO CALL THIS PROGRAM TYPE
 0008 ;"EXAMPLE filenam1.ext filenam2.ext" where
 0009 ;"filenam1.ext" IS THE OUTPUT FILE/DEVICE and
 0010 ;"filenam2.ext" IS THE INPUT FILE/DEVICE
 0011 ;
 0012 NAME EXAMPL

 0013 EXT FNAME ;SET UP XFCB
 0014 EXT ZNEW ;OPEN NEW XFCB
 0015 EXT ZOPN ;OPEN OLD XFCB
 0016 EXT ZCLOS ;CLOSE XFCB
 0017 EXT ZIOER ;ERROR ROUTINE
 0018 EXT ABORT ;END PROGRAM
 0019 EXT GCHAR ;GET A CHARACTER
 0020 EXT PUTC ;PUT A CHARACTER
 0021 ;
 0022 ;START OF PROGRAM
 0023 ;
 0000' 3A5D00 0024 START: LD A,(5DH) ;1ST BYTE OF FILNAME
 0003' FE20 0025 CP ' ' ;Q, BLANK FILE NAME
 0005' CA6500' 0026 JP Z,ERROUT ;YES, ERROR
 0008' 97 0027 SUB A ;USE EXT FROM FCB
 0009' 215COO 0028 LD HL,5CH ;POINT TO 1ST FCB
 000C' 117FOO' 0029 LD DE,OXFCB ;POINT TO OUTPUT XFCB
 000F' CD0OOO# 0030 CALL FNAME ;BUILD XFCB
 0012' CD0000# 0031 CALL ZNEW ;CREATE A NEW FILE
 0015' CC0000# 0032 CALL Z,ZIOER ;ERROR
 0033 ;
 0018' 3A6D00 0034 LD A,(6DH) ;1ST BYTE OF FILNAME
 001B' FE20 0035 CP ' ' ;Q, BLANK FILE NAME
 001D' CA6500' 0036 JP Z,ERROUT ;YES, ERROR
 0020' 97 0037 SUB A ;USE EXT FROM FCB
 0021' 216COO 0038 LD HL,6CH ;POINT TO 2nd FCB
 0024' llA700' 0039 LD DE,IXFCB ;POINT TO INPUT XFCB
 0027' CD1000# 0040 CALL FNAME ;BUILD XFCB
 002A' CD0000# 0041 CALL ZOPN ;OPEN OLD XFCB
 002D' CC1600# 0042 CALL Z,ZIOER ;ERROR
 0043 ;
 0030' 11A700' 0044 LOOP: LD DE,IXFCB ;POINT TO INPUT XFCB
 0033' CD0000# 0045 CALL GCHAR ;GET A CHARACTER
 0036' FE1A 0046 CP 1AH ;Q, END OF FILE
 0038' 280C 0047 JR Z,EOF ;YES
 003A' 117FOO' 0048 LD DE,OXFCB ;POINT TO OUTPUT FCB
 003D' 4F 0049 LD C,A ;GET CHARACTER
 003E' CDOOOO# 0050 CALL PUTC ;PUT ASCII CHARACTER
 0041' CC2E00# 0051 CALL Z,ZIOER ;ERROR
 0044' 18EA 0052 JR LOOP ;GET NEXT CHARACTER
 0053 ;
 0046' 117F00' 0054 EOF: LD DE,OXFCB ;CLOSE OUTPUT XFCB
 0049' CDO000# 0055 CALL ZCLOS
 004C' 215200' 0056 LD HL,EOFMSG ;POINT TO EOF MESSAGE
 004F' CDOOOO# 0057 CALL ABORT ;ABORT PROGRAM
 0058 ;

 Page 119

 CROMEMCO CDOS Z8O ASSEMBLER version 02.02 PAGE 0002
 *** EXAMPLE ***

 0052' 2A2A2A20 0059 EOFMSG DEFB '*** END OF JOB ***',13
 454E4420
 4F46204A
 4F42202A

 Page 120

 The program "EXAMPLE.COM" is now ready to be executed. To use the
 program type in the name of the program followed by an output file and
 an input file. For example

 B.EXAMPLE NEWFILE.Z80 EXAMPLE.Z80

 This example will copy the file "EXAMPLE.Z80" to the file
 "NEWFILE.Z80".
 Device names may also be used. The following example will type the
 file "EXAMPLE.Z80" on the console.

 B.EXAMPLE CON: EXAMPLE.Z80

 Page 121

 **
 PART VI - CREATING A NEW LUN TABLE FOR CROMEMCO FORTRAN IV
 **

 Page 122

 **
 PROCEDURE FOR CREATING A NEW LUN TABLE FOR FORTRAN
 **

 There have been a number of requests among our customers for information
 on how to change the driver dispatch table (LUN Table) to accommodate
 other I/O drivers with CROMEMCO FORTRAN IV. The purpose of this section
 is to explain the method for doing this. The present LUN Table is
 located in the FORTRAN Library file, FORLIB.REL, under the name: $LUNTB.

 The Linker automatically searches FORLIB when linking FORTRAN programs
 to satisfy any undefined symbols. LINK then loads these needed routines
 into memory. However, if the LUN Table were defined PRIOR to the search
 of FORLIB, the Linker would not load $LUNTB from FORLIB. This is done
 by first composing the new LUN Table giving it the same name ($LUNTB),
 then assembling it using ASMB, and finally linking it prior to the link
 of FORLIB. This procedure is demonstrated below. However, first here
 is a duplicate of the LUN Table which is presently used in CROMEMCO
 FORTRAN:

 ENTRY $LUNTB
 EXT $DRV3,LPTDRV,DSKDRV
 $LUNTB: DB 0BH
 ONE: DW $DRV3
 TWO: DW LPTDRV
 THREE: DW $DRV3
 FOUR: DW $DRV3
 FIVE: DW $DRV3
 SIX: DW DSKDRV
 SEVEN: DW DSKDRV
 EIGHT: DW DSKDRV
 NINE: DW DSKDRV
 TEN: DW DSKDRV
 END

 Note the use of the ENTRY statement to define the module. The symbols
 $DRV3, LPTDRV, and DSKDRV stand for the console driver, line-printer
 driver, and disk driver modules, respectively. The labels ONE through
 TEN are provided for convenient reference; they mark the drivcr-address
 which stands for each of the LUNs 1 through 10. As can be seen from
 the above, LUNs 1 and 3-5 are presently assigned to the console, LUN 2
 is assigned to the printer, and LUNs 6-10 are assigned to disk files.
 (See FORTRAN IV Instruction Manual, Appendix B and page 15 for more
 information on Logical Unit Numbers.) Also note in the above that the
 first byte of the module (DB 0BH) must be one more than the maximum
 LUN (in this case 10). Hence, more LUNs could be defined simply by
 adding DW statements and by changing this first byte.

 The present LUNs can be changed simply by rearranging the driver
 addresses in each DW statement above. (LUN 3 should be preserved as
 the console driver, however, as that is the one used by the system to
 print out error messages.) Users may also write their own drivers in
 Z-80 assembly code, assemble them with ASMB, and link them with the new
 $LUNTB. To illustrate these ideas here is a sample altered LUN Table:

 Page 123

 ENTRY $LUNTB
 EXT $DRV3,LPTDRV,DSKDRV,SPTDRV
 $LUNTB: DB 21
 ONE: DW $DRV3
 TWO: DW $DRV3
 THREE: DW $DRV3
 FOUR: DW LPTDRV
 FIVE: DW LPTDRV
 SIX: DW SPTDRV
 SEVEN: DW SPTDRV

 EIGHT: DW DSKDRV
 NINE: DW DSKDRV
 TEN: DW DSKDRV
 ELEVN: DW DSKDRV
 TWELV: DW DSKDRV
 THIRTN: DW DSKDRV
 FOURTN: DW DSKDRV
 FIFTN: DW DSKDRV
 SIXTN: DW DSKDRV
 SEVNTN: DW DSKDRV
 EIGHTN: DW DSKDRV
 NINETN: DW DSKDRV
 TWENTY: DW DSKDRV
 END

 In this example the user has added an EXTernal declaration for a serial
 line-printer, SPTDRV. The LUN assignments have also been changed as
 follows: LUNs 1 through 3 are assigned to the console, 4 and 5 are
 assigned to the parallel-port printer, 6 and 7 are assigned to the
 serial-port printer, 8 through 10 remain assigned to disk files, and
 LUNs 11 through 20 have also been assigned to disk files.

 The driver for the serial printer should be of the format:

 ENTRY SPTDRV
 START: ...
 :
 :
 END

 The LUN file which has been created can now be assembled using ASMB
 simply by typing:

 ASMB LUNTBNEW

 where LUNTBNEW.Z80 is the name of this file on the disk. The source
 file for the added driver (SPTDRIVR.Z80) must also be assembled; ASMB
 will create .REL files for both these modules. These two files can
 finally be linked to the FORTRAN by typing:

 LINK FORPROG,LUNTBNEW,SPTDRIVR

 where FORPROG is the user's previously-compiled FORTRAN IV program.
 LINK will automatically search FORLIB, but will ignore the $LUNTB file
 there because LUNTBNEW was linked first. Note that the ENTRY statement
 for LUNTBNEW.Z80 must have the same name as the original module ($LUNTB).

